scholarly journals The Impact of Exercise Serum on Selected Parameters of CD4+ T Cell Metabolism

Immuno ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 119-131
Author(s):  
Jana Palmowski ◽  
Kristina Gebhardt ◽  
Thomas Reichel ◽  
Torsten Frech ◽  
Robert Ringseis ◽  
...  

CD4+ T cells are sensitive to peripheral changes of cytokine levels and metabolic substrates such as glucose and lactate. This study aimed to analyze whether factors released after exercise alter parameters of human T cell metabolism, specifically glycolysis and oxidative phosphorylation. We used primary human CD4+ T cells activated in the presence of autologous serum, which was collected before (CO) and after a 30-min exercise intervention (EX). In the course of activation, cells and supernatants were analyzed for cell viability and diameter, real-time oxygen consumption by using PreSens Technology, mRNA expression of glycolytic enzymes and complexes of the electron transport chain by real-time PCR, glucose, and lactate levels in supernatants, and in vitro differentiation by flow cytometry. EX did not alter T cell phenotype, viability, or on-blast formation. Similarly, no difference between CO and EX were found for CD4+ T cell activation and cellular oxygen consumption. In contrast, higher levels of glucose were found after 48 h activation in EX conditions. T cells activated in autologous exercise serum expressed lower HK1 mRNA and higher IFN-γ receptor 1. We suggest that the exercise protocol used was not sufficient to destabilize the immune metabolism of T cells. Therefore, more intense and prolonged exercise should be used in future studies.

2020 ◽  
Vol 4 (s1) ◽  
pp. 6-7
Author(s):  
Rachel Quinn Muir ◽  
Barbara J. Klocke ◽  
Kasi C. McPherson ◽  
Jeremy B. Foote ◽  
Jennifer S. Pollock ◽  
...  

OBJECTIVES/GOALS: The overall goal of this study was to determine the effect of early life stress (ELS) on the intestinal CD4+ T cell immune compartment, at homeostasis and after induction of experimental Inflammatory Bowel Disease (IBD). METHODS/STUDY POPULATION: We used a mouse model of ELS, maternal separation with early weaning (MSEW). We used IL-10 reporter mice to enable analysis of IL-10-producing cells. Mice were examined on postnatal day 28 to determine the impact of ELS on gut regulatory T cells. Plasma levels of corticosterone (rodent stress response hormone) was determined by ELISA. Colitis was induced in MSEW and normal rear (NR) mice via intraperitoneal injection of α-IL-10R every 5 days until day 15. Mice were euthanized on days 20 and 30. Colonic tissue sections were stained for histological analysis. Remaining tissue was further processed for flow cytometric analysis of CD4+ T cells and innate lymphoid cells. RESULTS/ANTICIPATED RESULTS: Plasma corticosterone was elevated in MSEW mice compared to their NR counterparts at 4 weeks of age. We observed that the MSEW stress protocol does not affect the baseline colonic CD4+ T cell or innate lymphoid cell populations. There was a reduction in the intestinal CD4+ T cells and regulatory T cells on day 20 in α-IL-10R MSEW mice compared to NR counterparts. This difference disappeared by day 30. Histological scoring showed no difference in disease severity between α-IL-10R treated MSEW and NR mice on day 20. However, on day 30, when α-IL-10R NR mice are recovering from colitis, MSEW mice showed persistent histological inflammation, mainly attributable to sustained epithelial damage. DISCUSSION/SIGNIFICANCE OF IMPACT: Our results suggest that ELS prolongs intestinal inflammation and impairs epithelial repair. Future studies will focus on elucidating the mechanisms responsible for ELS-dependent impairment of mucosal repair in experimental colitis.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
James Ding ◽  
Samantha L. Smith ◽  
Gisela Orozco ◽  
Anne Barton ◽  
Steve Eyre ◽  
...  

AbstractCD4+ T-cells represent a heterogeneous collection of specialised sub-types and are a key cell type in the pathogenesis of many diseases due to their role in the adaptive immune system. By investigating CD4+ T-cells at the single cell level, using RNA sequencing (scRNA-seq), there is the potential to identify specific cell states driving disease or treatment response. However, the impact of sequencing depth and cell numbers, two important factors in scRNA-seq, has not been determined for a complex cell population such as CD4+ T-cells. We therefore generated a high depth, high cell number dataset to determine the effect of reduced sequencing depth and cell number on the ability to accurately identify CD4+ T-cell subtypes. Furthermore, we investigated T-cell signatures under resting and stimulated conditions to assess cluster specific effects of stimulation. We found that firstly, cell number has a much more profound effect than sequencing depth on the ability to classify cells; secondly, this effect is greater when cells are unstimulated and finally, resting and stimulated samples can be combined to leverage additional power whilst still allowing differences between samples to be observed. While based on one individual, these results could inform future scRNA-seq studies to ensure the most efficient experimental design.


Blood ◽  
2011 ◽  
Vol 118 (4) ◽  
pp. 965-974 ◽  
Author(s):  
Filippos Porichis ◽  
Douglas S. Kwon ◽  
Jennifer Zupkosky ◽  
Daniel P. Tighe ◽  
Ashley McMullen ◽  
...  

Abstract Defining the T helper functions impaired by programmed death–1 (PD-1) is crucial for understanding its role in defective HIV control and determining the therapeutic potential of targeting this inhibitory pathway. We describe here the relationships among disease stage, levels of PD-1 expression, and reversibility of CD4 T-cell impairment. PD-L1 blockade in vitro enhanced HIV-specific production of Th0 (IL-2), Th1 (IFN-γ), Th2 (IL-13), and TFH (IL-21) cytokines by CD4 T cells. PD-L1 blockade caused an early increase in cytokine transcription and translation that preceded cell proliferation. Although the impact of PD-L1 blockade on cytokine expression and, to a lesser extent, cell proliferation was associated with markers of disease progression, restoration of cytokine secretion was also observed in most subjects with undetectable viremia. PD-L1 blockade restored cytokine secretion in both PD-1intermediate and PD-1high sorted CD4 T-cell subsets. Compared with PD-1high HIV-specific CD8 T cells, PD-1high HIV-specific CD4 T cells showed lower expression of the inhibitory molecules CD160 and 2B4, demonstrating marked differences in expression of inhibitory receptors between T-cell subsets. These data show that PD-1 impairs HIV-specific T helper responses both by limiting expansion of these cells and by inhibiting effector functions of multiple differentiated CD4 T-cell subsets.


2021 ◽  
Vol 17 (7) ◽  
pp. e1009709
Author(s):  
Bonnie Douglas ◽  
Yun Wei ◽  
Xinshe Li ◽  
Annabel Ferguson ◽  
Li-Yin Hung ◽  
...  

Helminths are distinct from microbial pathogens in both size and complexity, and are the likely evolutionary driving force for type 2 immunity. CD4+ helper T cells can both coordinate worm clearance and prevent immunopathology, but issues of T cell antigen specificity in the context of helminth-induced Th2 and T regulatory cell (Treg) responses have not been addressed. Herein, we generated a novel transgenic line of the gastrointestinal nematode Strongyloides ratti expressing the immunodominant CD4+ T cell epitope 2W1S as a fusion protein with green fluorescent protein (GFP) and FLAG peptide in order to track and study helminth-specific CD4+ T cells. C57BL/6 mice infected with this stable transgenic line (termed Hulk) underwent a dose-dependent expansion of activated CD44hiCD11ahi 2W1S-specific CD4+ T cells, preferentially in the lung parenchyma. Transcriptional profiling of 2W1S-specific CD4+ T cells isolated from mice infected with either Hulk or the enteric bacterial pathogen Salmonella expressing 2W1S revealed that pathogen context exerted a dominant influence over CD4+ T cell phenotype. Interestingly, Hulk-elicited 2W1S-specific CD4+ T cells exhibited both Th2 and Treg phenotypes and expressed high levels of the EGFR ligand amphiregulin, which differed greatly from the phenotype of 2W1S-specific CD4+ T cells elicited by 2W1S-expressing Salmonella. While immunization with 2W1S peptide did not enhance clearance of Hulk infection, immunization did increase total amphiregulin production as well as the number of amphiregulin-expressing CD3+ cells in the lung following Hulk infection. Altogether, this new model system elucidates effector as well as immunosuppressive and wound reparative roles of helminth-specific CD4+ T cells. This report establishes a new resource for studying the nature and function of helminth-specific T cells.


Immuno ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 277-284
Author(s):  
Anastasiia Yu. Filatova ◽  
Alexandra V. Potekhina ◽  
Tatiana I. Arefieva

Background. We aimed to analyze the contents of the main CD4+ T-cell subsets in patients with atherosclerosis (AS) depending on age. Methods. Male patients with coronary and/or carotid AS, who are non-smokers, and who are receiving statins were divided into three age groups (I—<55 y.o. (n = 23), II—55–64 y.o. (n = 42), III—≥65 y.o. (n = 46)). Leukocyte phenotyping was performed by direct immunofluorescence and flow cytometry. For intracellular cytokine detection, blood mononuclear cells were pre-activated with phorbol 12-myristate 13-acetate and ionomycin in the presence of an intracellular vesicle transport blocker monensin. Results. The groups did not differ in traditional CVD risk factors and AS severity. The content of CD4+ T-cells was lower in group III and II than in group I. The content of CD4+CD25high Treg was lower in group III than in groups I and II. No differences in the quantities of the primed CD39+CD45RA− and CD278high Treg, CD4+INFγ+ Th1, CD4+IL17+ Th17, and CD4+IL17+INFγ+ Th1/17 were observed. There were negative correlations between the values of CD4+ T-cells, CD4+CD45RA+ T-cells, CD4+CD25high Treg, CD4+CD25highCD45RA+ Treg, and age. Conclusion. In patients with AS, the age-related depletion of naive CD4+ T-cells also extends to the regulatory compartment. This phenomenon should be considered when studying the impact of the immune cells on the progression of AS.


Author(s):  
Dalia E. Gaddis ◽  
Lindsey E. Padgett ◽  
Runpei Wu ◽  
Anh Nguyen ◽  
Chantel McSkimming ◽  
...  

Objective: CD4 T cells are important regulators of atherosclerotic progression. The metabolic profile of CD4 T cells controls their signaling and function, but how atherosclerosis affects T-cell metabolism is unknown. Here, we sought to determine the impact of atherosclerosis on CD4 T-cell metabolism and the contribution of such alterations to atheroprogression. Approach and Results: Using PCR arrays, we profiled the expression of metabolism genes in CD4 T cells from atherosclerotic, apolipoprotein-E knockout mice fed a Western diet. These cells exhibited dysregulated expression of genes critically involved in glycolysis and fatty acid degradation, compared with those from animals fed a standard laboratory diet. We examined how T-cell metabolism was changed in standard laboratory diet or Western diet–fed apolipoprotein-E knockout mice or humans by measuring glucose uptake, activation, and proliferation in CD4 T cells. We found that naive CD4 T cells from Western diet–fed apolipoprotein-E knockout mice failed to uptake glucose and thus displayed impaired proliferation and activation, compared with CD4 T cells from standard laboratory diet–fed animals. Similarly, as in mice, we observed that naive CD4 T-cell frequencies were reduced in circulation of human subjects with high cardiovascular disease compared with low cardiovascular disease, as assessed clinically based on medically necessary coronary angiography. Naive T cells from high cardiovascular disease subjects also showed reduced proliferative capacity. Conclusions: These results highlight the dysfunctional changes that occur in CD4 T-cell metabolism and immune responses during atherosclerosis. Targeting metabolic pathways within naive CD4 T cells could thus yield novel therapeutic approaches for improving CD4 T-cell responses against atheroprogression.


2016 ◽  
Vol 213 (8) ◽  
pp. 1589-1608 ◽  
Author(s):  
Cindy S. Ma ◽  
Natalie Wong ◽  
Geetha Rao ◽  
Akira Nguyen ◽  
Danielle T. Avery ◽  
...  

Naive CD4+ T cells differentiate into specific effector subsets—Th1, Th2, Th17, and T follicular helper (Tfh)—that provide immunity against pathogen infection. The signaling pathways involved in generating these effector cells are partially known. However, the effects of mutations underlying human primary immunodeficiencies on these processes, and how they compromise specific immune responses, remain unresolved. By studying individuals with mutations in key signaling pathways, we identified nonredundant pathways regulating human CD4+ T cell differentiation in vitro. IL12Rβ1/TYK2 and IFN-γR/STAT1 function in a feed-forward loop to induce Th1 cells, whereas IL-21/IL-21R/STAT3 signaling is required for Th17, Tfh, and IL-10–secreting cells. IL12Rβ1/TYK2 and NEMO are also required for Th17 induction. Strikingly, gain-of-function STAT1 mutations recapitulated the impact of dominant-negative STAT3 mutations on Tfh and Th17 cells, revealing a putative inhibitory effect of hypermorphic STAT1 over STAT3. These findings provide mechanistic insight into the requirements for human T cell effector function, and explain clinical manifestations of these immunodeficient conditions. Furthermore, they identify molecules that could be targeted to modulate CD4+ T cell effector function in the settings of infection, vaccination, or immune dysregulation.


Cancers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 260
Author(s):  
Myriam Ben Ben Khelil ◽  
Yann Godet ◽  
Syrine Abdeljaoued ◽  
Christophe Borg ◽  
Olivier Adotévi ◽  
...  

Over the past decades, CD4+ T cells have been considered as a supporting actor in the fields of cancer immunotherapy. Until recently, accumulating evidence has demonstrated the critical role of CD4+ T cells during antitumor immunity. CD4+ T cells can either suppress or promote the antitumor cytotoxic CD8+ T cell responses, either in secondary lymphoid organs or in the tumor. In this review, we provide an overview of the multifaceted role of different CD4+ T cell subsets in cancer immune response and their contribution during cancer therapies. Specifically, we focus on the latest progress regarding the impact of CD4+ T cell modulation on immunotherapies and other cancer therapies and discuss the prospect for harnessing CD4+ T cells to control tumor progression and prevent recurrence in patients.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 768-768
Author(s):  
Seema R Patel ◽  
Ashley L Bennett ◽  
Patricia E Zerra ◽  
Satheesh Chonat ◽  
Cheryl Maier ◽  
...  

Abstract Background: While red blood cell (RBC) alloantibodies can increase the probability of transfusion-related complications, not all patients become alloimmunized following transfusion. Several factors have been hypothesized to govern susceptibility to alloimmunization, including general differences in immune function and the potential impact of recipient inflammation at the time of transfusion. However, as individuals that do generate alloantibodies appear to experience an increased rate of additional alloantibody formation following subsequent transfusion, distinct immunological responses induced following exposure to certain antigens expressed by transfused RBCs may directly facilitate the development of alloantibodies following subsequent transfusion. Thus, while CD4 T cell help classically occurs through direct recognition of a peptide that resides within a target B cell antigen, these clinical observations suggest that CD4 T cells that respond to one RBC antigen may directly facilitate immunity to a completely distinct RBC alloantigen following subsequent transfusion. As RBCs express a variety of possible polymorphic antigens, both inside RBCs and at the RBC surface, exposure to alloantigens within RBCs may possess the capability to induce a CD4 T cell response that would be undetectable by clinical serological analysis, but which may facilitate subsequent alloimmunization. To test this, we determined whether cellular adaptive immunity to an intracellular alloantigen might enhance alloimmunization following subsequent RBC transfusion. Methods: B6 recipients were immunized three times a week apart against an intracellular antigen, green fluorescent protein (GFP). Two weeks following the last immunization, recipients were transfused with RBCs expressing the model antigen HOD (a fusion protein consisting of hen egg lysozyme fused to ovalbumin and human Duffy b) and GFP (HOD x GFP RBCs) or RBCs expressing the human Glycophorin A (hGPA) and GFP antigens (hGPA x GFP RBCs). Serum was collected at days 7, 14, 21 and 28 post-transfusion and the levels of anti-HOD or anti-GPA antibodies were determined by incubation of serum with HOD RBCs, GPA RBCs or B6 RBCs, followed by detection with fluorescently labeled anti-IgG antibodies. The adjusted mean fluorescent intensity (MFI) for anti-HOD or anti-GPA antibodies was calculated by subtracting the MFI observed following incubation with B6 RBCs from the MFI observed following incubation with HOD or GPA RBCs, respectively. Results: Recipients that underwent GFP immunization experienced a statistically significant enhancement of anti-HOD IgG compared to non-GFP immunized recipients following subsequent transfusion of HOD x GFP RBCs (p &lt; 0.05), strongly suggesting that prior exposure to a single intracellular antigenic determinant can enhance antibody formation following subsequent exposure to RBCs expressing both the intracellular antigen and a clinically relevant surface antigen. To determine whether immunological priming toward an intracellular antigen can impact RBC alloimmunization toward other cell surface RBC alloantigens, we likewise transfused recipients that had been previously immunized against GFP with RBCs that express hGPA and GFP. Similar to the impact of prior GFP immunization on HOD alloimmunization, prior GFP immunization rendered recipients responsive to the hGPA antigen following transfusion of hGPA x GFP RBCs. Importantly, non-GFP immunized recipients were non-responsive to the hGPA antigen regardless of being expressed on the same RBCs as GFP (p &lt; 0.05), suggesting that prior immunization toward an intracellular antigen may not only enhance subsequent alloimmunization in previously alloimmunized individuals, but also render non-responding recipients responsive to RBC-induced alloimmunization. Conclusion: These results demonstrate that immunity to an intracellular alloantigen can directly influence the immunological outcome following exposure to a subsequent extracellular RBC alloantigen. Moreover, these findings suggest a mechanism whereby alloantibody responders may exhibit an increased rate of additional alloantibody formation and highlight a previously under appreciated mechanism by which cellular adaptive immunity can impact the ability of an individual to respond to unrelated immunogens. Disclosures Chonat: Agios Pharmaceuticals: Honoraria.


Sign in / Sign up

Export Citation Format

Share Document