scholarly journals Oxidative stress is generated via the mitochondrial respiratory chain during plant cell apoptosis

Cytometry ◽  
2003 ◽  
Vol 54A (2) ◽  
pp. 109-117 ◽  
Author(s):  
Iona E. Weir ◽  
Nhu-An Pham ◽  
David W. Hedley
Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1356-1356
Author(s):  
Wenli Liu ◽  
Yueqin Liu ◽  
Ruihong Wang ◽  
Cuiling Li ◽  
Chuxia Deng ◽  
...  

Abstract Abstract 1356 Poster Board I-378 Introduction Olfactomedin 4 (OLFM4), also called hGC-1, GW112 and pDP4, was first identified and specifically expressed in hematopoietic myeloid cells. OLFM4 expression in myeloid cells is regulated by transcription factors, PU1 and NF-κB. It has significant homology in its C-terminal domain with other olfactomedin-related proteins. OLFM4 encodes a 510 amino acid N-linked glycoprotein. The exact biological function of OLFM4, especially in neutrophils, is currently undefined. To characterize the in vivo function of OLFM4, we generated OLFM4 deficient mice (OLFM4-/-) and investigated its potential role in neutrophil functioins. Results 1) In this study, we showed that OLFM4 is a secreted glycoprotein and is also localized in the mitochondria, cytoplasm and cell membrane fractions of neutrophils. We demonstrated that OLFM4 interacts with GRIM-19 (Genes associated with Retinoid-IFN-induced Mortality-19), an apoptosis related protein, in the neutrophil mitochondria using co-immuoprecipitation assay. GRIM-19 is a subunit of complex I of mitochondrial respiratory chain and is essential for maintenance of mitochondrial membrane potential. Our result suggests that OLFM4 appears to be a novel component of complex I of mitochondrial respiratory chain and may be involved in regulation of mitochondrial membrane potential. 2) Mice heterozygous (OLFM4+/-) and homozygous (OLFM4-/-) for the null mutation in OLFM4 appeared to have normal development, fertility, and viability relative to wild-type (WT) mice. Whole blood analysis, differential leukocyte counts, blood chemistry and bone marrow smears were normal in OLFM4-/- mice, suggesting that OLFM4 is not essential for normal development and hematopoiesis in mice. 3) In response to LPS, fMLP and E.coli bacteria challenge, neutrophils from OLFM4-/- mice showed significantly reduced superoxide (O2−) and hydrogen peroxide (H2O2) production compared with WT mice. These results suggest that OLFM4 is an essential component to mediate O2− and H2O2 production in the neutrophil mitochondria under inflammation stimuli. 4) Exogenous H2O2 induced neutrophil apoptosis in a time and dose dependent manner in WT mice, but this induction of apoptosis was significantly reduced in OLFM4-/- mice. This result suggests that OLFM4 sensitizes and mediates H2O2-induced apoptosis in neutrophils. 5) Furthermore, we demonstrated that H2O2-stimulated mitochondrial membrane permeability reduction and caspase-3 and caspase-9 activation were inhibited in the neutrophils of OLFM4-/- mice. This result confirmed our hypothesis that OLFM4 may be involved in maintenance of mitochondrial membrane potential and suggests that OLFM4 may have opposite role as GRIM-19. 6) Moreover, Bax association with mitochondria and the cytoplasmic translocation of Omi/HtrA2 and Smac/DIABLO in response to H2O2 were inhibited in the neutrophils of OLFM4-/- mice. Conclusion Our results suggest: 1) OLFM4 has multiple subcellular localizations including mitochondria, cytoplasm, and cell membrane in neutrophils. The interaction of OLFM4 with GRIM-19 in the mitochondria suggests that OLFM4 is novel component of complex I of mitochondrial respiratory chain in the mitochondria of neutrophils, 2) OLFM4 is a novel mitochondrial molecule that is essential for O2− and H2O2 production in the neutrophils in the presence of inflammation stimuli, 3) Loss of OLFM4 in neutrophils does not trigger spontaneous apoptosis. However, OLFM4 sensitizes oxidative stress-induced apoptosis in mouse neutrophils. OLFM4 is involved in the regulation of mitochondria membrane potential and sensitizes cytoplasmic translocation of Omi/HtrA2 and Smac/DIABLO and caspases-3 and caspase-9 mediated apoptosis in the presence of oxidative stress. Disclosures No relevant conflicts of interest to declare.


2007 ◽  
Vol 292 (5) ◽  
pp. L1211-L1218 ◽  
Author(s):  
Marco van der Toorn ◽  
Dirk-Jan Slebos ◽  
Harold G. de Bruin ◽  
Henri G. Leuvenink ◽  
Stephan J. L. Bakker ◽  
...  

Increased lung cell apoptosis and necrosis occur in patients with chronic obstructive pulmonary disease (COPD). Mitochondria are crucially involved in the regulation of these cell death processes. Cigarette smoke is the main risk factor for development of COPD. We hypothesized that cigarette smoke disturbs mitochondrial function, thereby decreasing the capacity of mitochondria for ATP synthesis, leading to cellular necrosis. This hypothesis was tested in both human bronchial epithelial cells and isolated mitochondria. Cigarette smoke extract exposure resulted in a dose-dependent inhibition of complex I and II activities. This inhibition was accompanied by decreases in mitochondrial membrane potential, mitochondrial oxygen consumption, and production of ATP. Cigarette smoke extract abolished the staurosporin-induced caspase-3 and -7 activities and induced a switch from epithelial cell apoptosis into necrosis. Cigarette smoke induced mitochondrial dysfunction, with compounds of cigarette smoke acting as blocking agents of the mitochondrial respiratory chain; loss of ATP generation leading to cellular necrosis instead of apoptosis is a new pathophysiological concept of COPD development.


2013 ◽  
Vol 288 (7) ◽  
pp. 4947-4956 ◽  
Author(s):  
Hila Zigdon ◽  
Aviram Kogot-Levin ◽  
Joo-Won Park ◽  
Ruth Goldschmidt ◽  
Samuel Kelly ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document