Cigarette smoke-induced blockade of the mitochondrial respiratory chain switches lung epithelial cell apoptosis into necrosis

2007 ◽  
Vol 292 (5) ◽  
pp. L1211-L1218 ◽  
Author(s):  
Marco van der Toorn ◽  
Dirk-Jan Slebos ◽  
Harold G. de Bruin ◽  
Henri G. Leuvenink ◽  
Stephan J. L. Bakker ◽  
...  

Increased lung cell apoptosis and necrosis occur in patients with chronic obstructive pulmonary disease (COPD). Mitochondria are crucially involved in the regulation of these cell death processes. Cigarette smoke is the main risk factor for development of COPD. We hypothesized that cigarette smoke disturbs mitochondrial function, thereby decreasing the capacity of mitochondria for ATP synthesis, leading to cellular necrosis. This hypothesis was tested in both human bronchial epithelial cells and isolated mitochondria. Cigarette smoke extract exposure resulted in a dose-dependent inhibition of complex I and II activities. This inhibition was accompanied by decreases in mitochondrial membrane potential, mitochondrial oxygen consumption, and production of ATP. Cigarette smoke extract abolished the staurosporin-induced caspase-3 and -7 activities and induced a switch from epithelial cell apoptosis into necrosis. Cigarette smoke induced mitochondrial dysfunction, with compounds of cigarette smoke acting as blocking agents of the mitochondrial respiratory chain; loss of ATP generation leading to cellular necrosis instead of apoptosis is a new pathophysiological concept of COPD development.

2017 ◽  
Vol 37 (9) ◽  
pp. 920-928 ◽  
Author(s):  
H Xue ◽  
MX Li

Cigarette smoke (CS) exposure is an important risk factor for chronic obstructive pulmonary disease (COPD). MicroRNA-150 (miR-150) is involved in several inflammatory diseases. However, little is known about the role of miR-150 in the pathogenesis of COPD. In this study, we established a CS-related mouse model of COPD and evaluated the impact of miR-150 on CS-induced lung inflammation. We further investigated the effects of miR-150 overexpression on pro-inflammatory cytokine production and apoptosis in airway epithelial cells exposed to CS extract (CSE). It was found that miR-150 was significantly ( p < 0.05) downregulated in the lungs of CS-exposed mice, compared to control mice under normal air. The CSE-exposed BEAS-2B airway epithelial cells displayed a four- to six-fold reduction in miR-150 levels, compared to control cells ( p < 0.05). Delivery of miR-150 mimic attenuated CS-induced lung inflammation and accumulation of neutrophils, lymphocytes, and macrophages in bronchoalveolar lavage fluid. Moreover, miR-150 overexpression prevented the induction of interleukin-6, tumor necrosis factor alpha, and interleukin-8 expression and nuclear factor kappa B (NF-κB) transcriptional activity in BEAS-2B cells by CSE. Additionally, miR-150 protected BEAS-2B cells from CSE-induced apoptosis, which was associated with reduced p53 expression. Co-expression of p53 restored apoptotic response to CSE in miR-150-overexpressing BEAS-2B cells. Collectively, miR-150 suppresses CS-induced lung inflammation and airway epithelial cell apoptosis, which is causally linked to repression of p53 expression and NF-κB activity. Restoration of miR-150 expression may represent a potential therapeutic strategy for CS-related COPD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ningfang Lian ◽  
Qiaoxian Zhang ◽  
Jia Chen ◽  
Mengxue Chen ◽  
Jiefeng Huang ◽  
...  

Background: Cigarette smoking is a major risk factor for bronchoalveolar epithelial cell (BAEC) injury. Understanding the relevant pathogenesis is important for the treatment of cigarette smoke–related chronic airway diseases such as chronic obstructive pulmonary disease.Methods: In this study, BAECs were cultured in 5% cigarette smoke extract (CSE) or regular culture medium for 24 h. Differentially expressed genes (DEGs) were detected by next-generation RNA sequencing (RNA-seq) and validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Bioinformatic analysis was performed on DEGs. Co-treated BAECs with 5% CSE and the ferroptosis inhibitor, ferrostatin-1 was applied to observe the role of ferroptosis.Results: In the CSE group, 210 upregulated genes and 159 downregulated genes were identified compared with the control group. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that the DEGs were related to oxidative stress and ferroptosis. Ferroptosis-related genes were further verified by qRT-PCR. The mRNA level of GPX4 decreased; the mRNA levels of ACSL4, FTH1 and SLC7A11 increased (p &lt; 0.05). Pretreatment with the ferroptosis inhibitor ferrostatin-1 mitigated CSE-induced ROS accumulation and inflammatory mediator expression in BAECs (p &lt; 0.05).Conclusion: CSE treatment altered ferroptosis-related gene expression patterns in cultured BAECs. Inhibition of ferroptosis reduced the inflammatory response of CSE-treated BAECs. These data provide a better understanding of the underlying molecular mechanisms of CSE-related lung injury.


Sign in / Sign up

Export Citation Format

Share Document