scholarly journals Flow cytometry analysis of murine hematopoietic stem cells

2012 ◽  
Vol 83A (1) ◽  
pp. 27-37 ◽  
Author(s):  
Allison Mayle ◽  
Min Luo ◽  
Mira Jeong ◽  
Margaret A. Goodell
2021 ◽  
Vol 8 ◽  
Author(s):  
Haijun Zhao ◽  
Yanhui He

Increasing evidence reveals that lysophosphatidylcholine (LPC) is closely related to endothelial dysfunction. The present study aimed to investigate the mechanism of LPC in inhibiting the proangiogenesis and vascular inflammation of human endothelial progenitor cells (EPCs) derived from CD34+ cells. The early EPCs were derived from CD34+ hematopoietic stem cells whose purity was identified using flow cytometry analysis. The surface markers (CD34, KDR, CD31; VE-cadherin, vWF, eNOS) of EPCs were examined by flow cytometry analysis and immunofluorescence. RT-qPCR was used to detect the mRNA expression of inflammatory cytokines (CCL2, IL-8, CCL4) and genes associated with angiogenesis (VEGF, ANG-1, ANG-2) in early EPCs after treatment of LPC (10 μg/ml) or phosphatidylcholine (PC, 10 μg/ml, control). The angiogenesis of human umbilical vein endothelial cells (HUVECs) incubated with the supernatants of early EPCs was detected by a tube formation assay. The mRNA and protein levels of key factors on the PKC pathway (phosphorylated PKC, TGF-β1) were measured by RT-qPCR and western blot. The localization of PKC-β1 in EPCs was determined by immunofluorescence staining. We found that LPC suppressed the expression of CCL2, CCL4, ANG-1, ANG-2, promoted IL-8 expression and had no significant effects on VEGF expression in EPCs. EPCs promoted the angiogenesis of HUVECs, which was significantly inhibited by LPC treatment. Moreover, LPC was demonstrated to promote the activation of the PKC signaling pathway in EPCs. In conclusion, LPC inhibits proangiogenesis of human endothelial progenitor cells derived from CD34+ hematopoietic stem cells.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2429-2429
Author(s):  
Tomohiko Ishibashi ◽  
Takafumi Yokota ◽  
Michiko Ichii ◽  
Yusuke Satoh ◽  
Takao Sudo ◽  
...  

Abstract Identification of novel markers associated with hematopoietic stem cells (HSCs) is important to progress basic and clinical research regarding the HSC biology. We previously reported that endothelial cell-selective adhesion molecule (ESAM) marks HSCs throughout life in mice (Yokota et al. Blood, 2009). We also demonstrated that ESAM can be a useful indicator of activated HSCs after bone marrow (BM) injury and that ESAM is functionally important for recovering hematopoiesis by using ESAM knockout mice (Sudo et al. J Immunol, 2012). However, the discrepancy between species has been a long-standing obstacle to apply findings in mice to human. For example, established murine HSC markers such as Sca-1 or CD150 are not expressed on human HSCs. Thus, it is important to know if ESAM marks HSCs beyond species and serves as a functional molecule for the HSC property, but information regarding ESAM expression in human HSCs has been quite limited. In this study, we have examined the ESAM expression pattern on human HSCs derived from diverse sources. In addition, we have performed functional assessment of the ESAM-expressing cells. Cord blood (CB), aspirated BM, and granulocyte-colony stimulating factor-mobilized peripheral blood (GMPB) were obtained from healthy donors. BM was also obtained from head of femora of patients who received the hip replacement surgery. All of the protocols were approved by the Institutional Review Board of Osaka University School of Medicine, and we obtained the written agreement form with informed consent from all participants. Mononuclear cells were separated using Ficoll centrifugation from CB, aspirated BM and GMPB. For preparation of BM cells adjacent to bone tissues, trabecular tissues of femora were treated with 2 mg/ml collagenase IV and DNase and gently agitated for 1 hour at 37 °C. Collected cells were analyzed using flow cytometry for cell surface expression of ESAM and other markers. Further, the CD34+ CD38−cells were fractionated according to the intensity of ESAM expression and evaluated in vivo and in vitro functional assays. Flow cytometry analyses revealed that the majority of CB CD34+ CD38− cells expressed ESAM. According to the expression level, CB CD34+ CD38− cells could be subdivided into three populations, namely ESAM−/Low, ESAMHigh, and ESAMBright. While all CB contained a robust ESAMHigh population in CD34+ CD38− cells, the percentage of ESAMBright cells varied widely among CB samples. The ESAMHigh CD34+ CD38− cells also expressed CD90 and CD133, which are known as HSC markers. Methylcellulose colony-forming assays and limiting dilution assays revealed that ESAMHigh fraction enriches primitive hematopoietic progenitors. Further, ESAMHigh cells also reconstituted the long-term human hematopoiesis in NOD/Shi-scid, IL-2Rγnull (NOG) mice. Therefore, as in mice, ESAMHighmarks authentic HSCs in human. On the other hand, ESAMBright CD34+ CD38− cells showed low colony-forming activities and no reconstitution of human hematopoiesis in NOG mice. These ESAMBright CD34+ CD38− cells expressed CD118/leukemia inhibitor factor receptor and endothelial markers such as VE-Cadherin, Flk-1, and CD146, but not CD45. These results suggested that ESAMBright cells in the CB CD34+ CD38− fraction are non-hematopoietic cells. With respect to the other HSC sources such as aspirated BM and GMPB, almost all CD34+ CD38− cells were ESAMHigh and ESAMBright cells were not found in this fraction. Interestingly, however, ESAMBright cells were found in the CD34+ CD38− fraction isolated from collagenase-treated femora. These BM-derived ESAMBright CD34+ CD38− cells expressed endothelial markers as did the CB-derived cells. They could generate CD31+endothelial cells, but not hematopoietic cells in coculture with MS5 stromal cells with vascular endothelial growth factor, stromal-cell-derived factor, and interleukin 16. In conclusion, ESAM expression serves as a marker to enrich HSCs in human regardless of the HSC sources. In addition, the very high intensity of this marker might be useful to isolate non-hematopoietic progenitors from CD34+ CD38− cells, which has been conventionally used as human HSCs. The common feature of ESAM expression of murine and human HSCs suggests a possibility that functional significance of ESAM expression obtained from mouse studies could be applicable to human. Disclosures: No relevant conflicts of interest to declare.


2004 ◽  
Vol 57A (2) ◽  
pp. 100-107 ◽  
Author(s):  
Joachim Oswald ◽  
Birgitte Jørgensen ◽  
Tilo Pompe ◽  
Fritz Kobe ◽  
Katrin Salchert ◽  
...  

Cytometry ◽  
1987 ◽  
Vol 8 (3) ◽  
pp. 296-305 ◽  
Author(s):  
Kenneth F. McCarthy ◽  
Martha L. Hale ◽  
Paula L. Fehnel

Author(s):  
Mukul Girotra ◽  
Anne-Christine Thierry ◽  
Alexandre Harari ◽  
George Coukos ◽  
Olaia Naveiras ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1897-1897
Author(s):  
Ramon V. Tiu ◽  
Jennifer J. Powers ◽  
Abdo Haddad ◽  
Ying Jiang ◽  
Jaroslaw P. Maciejewski

Abstract Members of the signaling lymphocytic activation molecule (SLAM) family, including CD150, CD48 and CD244, were shown to precisely distinguish more committed lineage restricted progenitor cells from pluripotent and multipotent murine hematopoietic stem cells (HSC; Kiel et al; 2005 Cell). Similar SLAM profiles may also be present on HSC subsets in humans. We hypothesized that these SLAM markers may be indicators not only of stem cell potential in normal hematopoiesis but also distinguish a subset of the most immature malignant precursors of leukemia. In agreement with the concept of a “cancer stem cell,” the presence of leukemic stem cell population may be an indicator of important clinical and biological properties. We first tested the distribution of CD150, CD48 and CD244 antigens on human CD34+ cells derived from 7 control individuals using 4-color flow cytometry. CD34+ cells were measured in the blast gate based on side scatter and CD45 expression. Within CD34+ blasts, expression of CD48, CD150, and CD244 was detected on 16.71%±9.69, 6.53%±2.93, and 26.92%±6.95 of cells respectively. Subsequently, we investigated SLAM expression in 9 immature leukemic cell lines, including KG-1, K562, U937, HEL, HL60, MKN-95, NB-4, Kasumi and UT7, and found increased expression of SLAM markers in KG-1 (CD48+, CD150+, CD244+) and Kasumi (CD48−, CD150−, CD244+). Consequently, none of the leukemic cells showed pluripotent/multipotent SLAM profiles. We then compared the SLAM marker expression on blasts from patients with AML and MDS with that of CD34+ cells from normal controls. We studied a total of 28 patients: 11 MDS (2 low grade, 5 advanced MDS, 3 MDS/MPD overlap) and 10 AML (FAB: 3 M1, 2 M2, 1 M3, 2 M4/M4E0 and 2 M6). In our cohort, 8/10 AML patients expressed one of the three SLAM markers; 6/10 were CD150−CD48−CD244+ (63.57%±6.96) and 2/10 were CD150+CD48−CD244−(46%±10.96) suggestive of the presence of either pluripotent or multipotent leukemic stem cell phenotype. In the MDS cohort, 8/11 patients expressed one of three SLAM markers, 7/11 were CD150−CD48−CD244+ (41.21% ± 8.9) and 1/11 were CD150+CD48−CD244− (1.26%±0.59) again consistent with a profile derived from either pluripotent or multipotent stem cells. None of the MDS and AML patients had either co-expression of CD244 and CD48 or increased expression of CD48 alone. Two of the M1 type AML patients with CD150−CD48−CD244+ phenotype received prior chemotherapy and achieved complete remission on bone marrow biopsy and flow cytometry using traditional blast markers. In some, we conclude that the SLAM receptor markers may be associated with certain types of leukemic blasts and may be useful in the identification of leukemic stem cell population in both MDS and AML.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3682-3682
Author(s):  
Chiharu Sugimori ◽  
Kanako Mochizuki ◽  
Hirohito Yamazaki ◽  
Shinji Nakao

Abstract Acquired aplastic anemia (AA) is thought to be caused by the immune system attack against hematopoietic stem cells. However, there is no direct evidence that an immune system attack against normal hematopoietic stem cells leads to development of AA. The immune system attack may be directed toward abnormal stem cells given the fact that some patients with myelodysplastic syndrome respond to immunosuppressive therapy. Although the presence of a small population of CD55−CD59− blood cells represents a reliable marker for the immune pathophysiology of AA, little is known regarding when and how such paroxysmal nocturnal hemoglobinuria (PNH)-type cells appear in patients with AA. The development of AA with a small population of PNH-type cells was recently observed in an allogeneic stem cell transplant (SCT) recipient. This patient, a 59-year-old male, who had been treated with allogeneic peripheral blood stem cell transplantation (PBSCT) from an HLA-compatible sibling for treatment of very severe AA in March 2002, developed severe pancytopenia in December 2005. Late graft failure (LGF) without residual recipient cells was diagnosed based on the results of a chimerism analysis. Sensitive flow cytometry failed to reveal any increase in the proportion of CD55−CD59− PNH-type blood cells. The patient underwent a second PBSCT from the original donor without preconditioning in February 2006. Although his pancytopenia was completely resolved by day 20, his blood counts gradually decreased from day 60 without any apparent complications. Flow cytometry revealed small populations of PNH-type granulocytes in his peripheral blood (Figure 1). Both the PNH-type and normal phenotype granulocytes were of donor origin. PIG-A gene analyses showed the PNH-type granulocytes in the patient to be a clonal stem cell with an insertion of thymine at position 593 (codon 198). Similar results were obtained from the sorted PNH-type granulocytes obtained 6 months later. The patient was treated with horse antithymocyte globulin and cyclosporine. The patient required no further transfusions after 88 days of the therapy and remains well as of August, 2007. The small population of PNH-type cells was not detectable in any of 50 SCT recipients showing stable engraftment or in an AA patient suffering graft rejection after a SCT. These findings suggest that some factors expressed by the patient induced an immune system attack against autologous hematopoietic cells, leading to de novo development of donor-cell derived AA. This is the first evidence that an immune system attack against normal hematopoietic stem cells results in AA associated with a clonal expansion of a PIG-A mutant which may originally be present in the donor bone marrow. Figure Figure


Sign in / Sign up

Export Citation Format

Share Document