Measurement of Mitochondrial Mass and Membrane Potential in Hematopoietic Stem Cells and T-cells by Flow Cytometry

Author(s):  
Mukul Girotra ◽  
Anne-Christine Thierry ◽  
Alexandre Harari ◽  
George Coukos ◽  
Olaia Naveiras ◽  
...  
PLoS ONE ◽  
2010 ◽  
Vol 5 (10) ◽  
pp. e13109 ◽  
Author(s):  
Yoshinori Sato ◽  
Hiroshi Takata ◽  
Naoki Kobayashi ◽  
Sayaka Nagata ◽  
Naomi Nakagata ◽  
...  

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4107-4107
Author(s):  
Max Jan ◽  
Florian Scherer ◽  
David M. Kurtz ◽  
Aaron M Newman ◽  
Henning Stehr ◽  
...  

Abstract Background: Pre-leukemic hematopoietic stem cells (HSC) have been implicated in AML (Jan et al STM 2012) and also for several lymphoid leukemias including ALL, HCL, and CLL. Separately, relapse of ALL following CD19 CAR-T cell therapy has been associated with lymphomyeloid lineage switch. Finally, healthy persons with clonally expanded HSCs are at increased risk of hematologic malignancies including lymphomas, and in mouse DLBCL models we previously demonstrated the oncogenic sufficiency of BCL6 overexpression in HSC (Green et al 2014 Nat Comm). Nevertheless, the cellular origin of DLBCL in the majority of patients is not definitively known. We sought to investigate the presence of mutations found in DLBCL within matched HSCs. Methods: We deeply genotyped somatic mutations in diagnostic biopsy tissues of 16 patients with DLBCL using CAPP-Seq to a median sequencing depth of 1100x (Newman et al 2014 Nat Med; Scherer et al 2015 ASH). We then profiled each patient for evidence implicating HSCs using somatic mutation lineage tracing, in either direct or indirect fashion. For direct evaluation, we used highly purified, serially FACS-sorted HSCs from grossly uninvolved bone marrow (BM) (n=5; Fig 1a-b). For indirect assessment, we either profiled serial tumor biopsies (n=13), or interrogated sorted cells from terminally differentiated blood lineages (n=7), including peripheral CD3+ T cells, CD14+ Monocytes, and B cells expressing a light-chain discordant to that of tumor isotype. HSCs and differentiated lineages were then interrogated by direct genotyping, using 3 highly sensitive orthogonal quantitative methods, including Myd88 L265P droplet digital PCR (n=6), BCL6 translocation breakpoint qPCR (n=4), and DLBCL CAPP-Seq profiling of 268 genes (n=5). We used the theoretical limit of detection (LOD) genotyping performance for CAPP-Seq (0.001%, Newman et al 2016 Nat Biotech), and established analytical sensitivity of our custom MYD88 ddPCR via limiting dilution (~1%). These LODs met or exceeded the expected limit of sorting impurity by FACS (~1%). For 6 patients experiencing one or more DLBCL relapse, we deeply profiled 13 serial tumor biopsies by CAPP-Seq, and then assessed overlap in somatic mutations and VDJ sequences in biopsy pairs as additional indirect evidence implicating HSCs. Results: We obtained a median of ~2000 sorted HSCs and ~1700 sorted cells from differentiated lineages, and genotyped each population using one or more of the 3 direct genotyping methods described above. Three patients with sufficient cell numbers were profiled both by CAPP-Seq and either ddPCR (n=2) or qPCR (n=1). Surprisingly, we found no evidence implicating HSCs either directly or indirectly in any of the 16 patients, regardless of the assay employed or the cell types/lineages genotyped (e.g., Fig 1b). In 2 patients with MYD88 L265P mutations, we found evidence for MYD88+ B-cells with discordant light chains by ddPCR (~0.1%) potentially implicating common lymphoid precursors (CLPs), but found no evidence for similar involvement of T-cells or monocytes. In 6 DLBCL patients experiencing relapse, tumor pairs profiled by CAPP-Seq (median depth 957) shared 93% of somatic mutations (75-100%, Fig 1c). Such pairs invariably shared clonal IgH VDJ rearrangements (4/4, 100%), thus implicating a common progenitor arising in later stages of B-cell development, not HSCs. Conclusions: We find no evidence to implicate HSCs in the derivation of DLBCL. While formal demonstration of absence of pre-malignant HSCs in DLBCL would require overcoming practical and technical limitations (including number of available HSCs, sorting purity, and genotyping sensitivity), the pattern of shared somatic alterations at relapse makes this highly unlikely. We speculate that unlike lymphoid leukemias, the cell-of-origin for most DLBCLs reside later in B-lymphopoiesis, beyond CLPs. Figure. (a) HSC sorting from BM by FACS (b) Allele frequencies of mutations found by CAPP-Seq in an examplary DLBCL case (x-axis) compared to the same variants in HSCs (y-axis). (c) Phylogenetic trees of DLBCL patients experiencing relapse (n=6) with tumor pairs sequenced by CAPP-Seq. Shown are the evolutionary distances between (i) germline and common inferrable progenitor (CIP) illustrating the fraction of shared mutations between tumor pairs, and (ii) CIP and both diagnostic (tumor 1) and relapse tumors (tumor 2) indicating unique mutations to each tumor. Figure. (a) HSC sorting from BM by FACS (b) Allele frequencies of mutations found by CAPP-Seq in an examplary DLBCL case (x-axis) compared to the same variants in HSCs (y-axis). (c) Phylogenetic trees of DLBCL patients experiencing relapse (n=6) with tumor pairs sequenced by CAPP-Seq. Shown are the evolutionary distances between (i) germline and common inferrable progenitor (CIP) illustrating the fraction of shared mutations between tumor pairs, and (ii) CIP and both diagnostic (tumor 1) and relapse tumors (tumor 2) indicating unique mutations to each tumor. Disclosures Newman: Roche: Consultancy. Levy:Kite Pharma: Consultancy; Five Prime Therapeutics: Consultancy; Innate Pharma: Consultancy; Beigene: Consultancy; Corvus: Consultancy; Dynavax: Research Funding; Pharmacyclics: Research Funding. Diehn:Novartis: Consultancy; Quanticel Pharmaceuticals: Consultancy; Roche: Consultancy; Varian Medical Systems: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4640-4640
Author(s):  
Heng-Yi Liu ◽  
Nezia Rahman ◽  
Tzu-Ting Chiou ◽  
Satiro N. De Oliveira

Background: Chemotherapy-refractory or recurrent B-lineage leukemias and lymphomas yield less than 50% of chance of cure. Therapy with autologous T-cells expressing chimeric antigen receptors (CAR) have led to complete remissions, but the effector cells may not persist, limiting clinical efficacy. Our hypothesis is the modification of hematopoietic stem cells (HSC) with anti-CD19 CAR will lead to persistent generation of multilineage target-specific immune cells, enhancing graft-versus-cancer activity and leading to development of immunological memory. Design/Methods: We generated second-generation CD28- and 4-1BB-costimulated CD19-specific CAR constructs using third-generation lentiviral vectors for modification of human HSC for assessment in vivo in NSG mice engrafted neonatally with human CD34-positive cells. Cells were harvested from bone marrows, spleens, thymus and peripheral blood at different time points for evaluation by flow cytometry and ddPCR for vector copy numbers. Cohorts of mice received tumor challenge with subcutaneous injection of lymphoma cell lines. Results: Gene modification of HSC with CD19-specific CAR did not impair differentiation or proliferation in humanized mice, leading to CAR-expressing cell progeny in myeloid, NK and T-cells. Humanized NSG engrafted with CAR-modified HSC presented similar humanization rates to non-modified HSC, with multilineage CAR-expressing cells present in all tissues with stable levels up to 44 weeks post-transplant. No animals engrafted with CAR-modified HSC presented autoimmunity or inflammation. T-cell populations were identified at higher rates in humanized mice with CAR-modified HSC in comparison to mice engrafted with non-modified HSC. CAR-modified HSC led to development of T-cell effector memory and T-cell central memory phenotypes, confirming the development of long-lasting phenotypes due to directed antigen specificity. Mice engrafted with CAR-modified HSC successfully presented tumor growth inhibition and survival advantage at tumor challenge with lymphoma cell lines, with no difference between both constructs (62.5% survival for CD28-costimulated CAR and 66.6% for 41BB-costimulated CAR). In mice sacrificed due to tumor development, survival post-tumor injection was directly correlated with tumor infiltration by CAR T-cells. Conclusions: CAR modification of human HSC for cancer immunotherapy is feasible and continuously generates CAR-bearing cells in multiple lineages of immune cells. Targeting of different malignancies can be achieved by adjusting target specificity, and this approach can augment the anti-lymphoma activity in autologous HSC recipients. It bears decreased morbidity and mortality and offers alternative therapeutic approach for patients with no available sources for allogeneic transplantation, benefiting ethnic minorities. Disclosures De Oliveira: National Institute for Health Research Biomedical Research Centre at Great Ormond Street Hospital for Children NHS Foundation Trust and University College London: Research Funding; NIAID, NHI: Research Funding; Medical Research Council: Research Funding; CIRM: Research Funding; National Gene Vector Repository: Research Funding.


1999 ◽  
Vol 189 (4) ◽  
pp. 693-700 ◽  
Author(s):  
Taila Mattern ◽  
Gundolf Girroleit ◽  
Hans-Dieter Flad ◽  
Ernst T. Rietschel ◽  
Artur J. Ulmer

CD34+ hematopoietic stem cells, which circulate in peripheral blood with very low frequency, exert essential accessory function during lipopolysaccharide (LPS)-induced human T lymphocyte activation, resulting in interferon γ production and proliferation. In contrast, stimulation of T cells by “conventional” recall antigens is not controlled by blood stem cells. These conclusions are based on the observation that depletion of CD34+ blood stem cells results in a loss of LPS-induced T cell stimulation as well as reduced expression of CD80 antigen on monocytes. The addition of CD34-enriched blood stem cells resulted in a recovery of reactivity of T cells and monocytes to LPS. Blood stem cells could be replaced by the hematopoietic stem cell line KG-1a. These findings may be of relevance for high risk patients treated with stem cells or stem cell recruiting compounds and for patients suffering from endotoxin-mediated diseases.


Blood ◽  
2004 ◽  
Vol 104 (12) ◽  
pp. 3565-3572 ◽  
Author(s):  
Weili Sun ◽  
James R. Downing

The AML1/CBFβ transcriptional complex is essential for the formation of definitive hematopoietic stem cells (HSCs). Moreover, development of the hematopoietic system is exquisitely sensitive to the level of this complex. To investigate the effect of AML1 dosage on adult hematopoiesis, we compared the hematopoietic systems of AML1+/– and AML1+/+ mice. Surprisingly, loss of a single AML1 allele resulted in a 50% reduction in long-term repopulating hematopoietic stem cells (LTR-HSCs). This decrease did not, however, extend to the next level of hematopoietic differentiation. Instead, AML1+/– mice had an increase in multilineage progenitors, an expansion that resulted in enhanced engraftment following transplantation. The expanded pool of AML1+/– progenitors remained responsive to homeostatic mechanisms and thus the number of mature cells in most lineages remained within normal limits. Two notable exceptions were a decrease in CD4+ T cells, leading to an inversion of the CD4+ to CD8+ T-cell ratio and a decrease in circulating platelets. These data demonstrate a dosage-dependent role for AML1/CBFβ in regulating the quantity of HSCs and their downstream committed progenitors, as well as a more restricted role in T cells and platelets. The latter defect mimics one of the key abnormalities in human patients with the familial platelet disorder resulting from AML1 haploinsufficiency.


2012 ◽  
Vol 83A (1) ◽  
pp. 27-37 ◽  
Author(s):  
Allison Mayle ◽  
Min Luo ◽  
Mira Jeong ◽  
Margaret A. Goodell

Sign in / Sign up

Export Citation Format

Share Document