Neuroprotective effect of Na + /H + exchangers isoform‐1 inactivation against 6‐hydroxydopamine‐induced mitochondrial dysfunction and neuronal apoptosis in Parkinson's disease models

2021 ◽  
Author(s):  
Ruixian Xing ◽  
Xuewen Liu ◽  
Buxian Tian ◽  
Yan Cheng ◽  
Longguang Li
2021 ◽  
Author(s):  
Dhruv Mahendru ◽  
Ashish Jain ◽  
Seema Bansal ◽  
Deepti Malik ◽  
Neha Dhir ◽  
...  

Aim: The aim of the study was to evaluate the neuroprotective effect of bone marrow stem cell secretome in the 6-hydroxydopamine (6-OHDA) model of Parkinson's disease. Materials & methods: Secretome prepared from mesenchymal stem cells of 3-month-old rats was injected daily for 7 days between days 7 and 14 after 6-OHDA administration. After 14 days, various neurobehavioral parameters were conducted. These behavioral parameters were further correlated with biochemical and molecular findings. Results & conclusion: Impaired neurobehavioral parameters and increased inflammatory, oxidative stress and apoptotic markers in the 6-OHDA group were significantly modulated by secretome-treated rats. In conclusion, mesenchymal stem cells-derived secretome could be further explored for the management of Parkinson's disease.


Antioxidants ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 49 ◽  
Author(s):  
Lyubka P. Tancheva ◽  
Maria I. Lazarova ◽  
Albena V. Alexandrova ◽  
Stela T. Dragomanova ◽  
Ferdinando Nicoletti ◽  
...  

We compared the neuroprotective action of three natural bio-antioxidants (AOs): ellagic acid (EA), α-lipoic acid (LA), and myrtenal (Myrt) in an experimental model of Parkinson’s disease (PD) that was induced in male Wistar rats through an intrastriatal injection of 6-hydroxydopamine (6-OHDA). The animals were divided into five groups: the sham-operated (SO) control group; striatal 6-OHDA-lesioned control group; and three groups of 6-OHDA-lesioned rats pre-treated for five days with EA, LA, and Myrt (50 mg/kg; intraperitoneally- i.p.), respectively. On the 2nd and the 3rd week post lesion, the animals were subjected to several behavioral tests: apomorphine-induced rotation; rotarod; and the passive avoidance test. Biochemical evaluation included assessment of main oxidative stress parameters as well as dopamine (DA) levels in brain homogenates. The results showed that all three test compounds improved learning and memory performance as well as neuromuscular coordination. Biochemical assays showed that all three compounds substantially decreased lipid peroxidation (LPO) levels, and restored catalase (CAT) activity and DA levels that were impaired by the challenge with 6-OHDA. Based on these results, we can conclude that the studied AOs demonstrate properties that are consistent with significant antiparkinsonian effects. The most powerful neuroprotective effect was observed with Myrt, and this work represents the first demonstration of its anti-Parkinsonian impact.


2015 ◽  
Vol 51 (1) ◽  
pp. 111-115 ◽  
Author(s):  
Débora Dalla Vecchia ◽  
Marissa Giovanna Schamne ◽  
Marcelo Machado Ferro ◽  
Ana Flávia Chaves dos Santos ◽  
Camila Lupepsa Latyki ◽  
...  

Parkinson's disease (PD) is an age-related neurodegenerative disorder characterized by the slow and progressive death of dopaminergic neurons in the (substantia nigra pars compact). Hypericum perforatum (H. perforatum) is a plant widely used as an antidepressant, that also presents antioxidant and anti-inflammatory properties. We evaluated the effects of H. perforatum on the turning behavior of rats submitted to a unilateral administration of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle as an animal model of PD. The animals were treated with H. perforatum (100, 200, or 400 mg/kg, v.o.) for 35 consecutive days (from the 28th day before surgery to the 7th day after). The turning behavior was evaluated at 7, 14 and 21 days after the surgery, and the turnings were counted as contralateral or ipsilateral to the lesion side. All tested doses significantly reduced the number of contralateral turns in all days of evaluation, suggesting a neuroprotective effect. However, they were not able to prevent the 6-OHDA-induced decrease of tyrosine hydroxylase expression in the lesioned striatum. We propose that H. perforatum may counteract the overexpression of dopamine receptors on the lesioned striatum as a possible mechanism for this effect. The present findings provide new evidence that H. perforatum may represent a promising therapeutic tool for PD.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Juan Lu ◽  
Xuelei Liu ◽  
Ye Tian ◽  
Hang Li ◽  
Zhenxing Ren ◽  
...  

The objective of this study was to explore the neuroprotective effect of moxibustion on rats with Parkinson’s disease (PD) and its mechanism. A Parkinson’s disease model was established in rats using a two-point stereotactic 6-hydroxydopamine injection in the right substantia nigra (SN) and ventral tegmental area. The rats received moxibustion at the Baihui (GV20) and Sishencong (EX-HN1) acupoints for 20 minutes, six times a week, for 6 weeks. The right SN tissue was histologically and immunohistochemically examined. Differentially expressed genes (DEGs) were identified through RNA sequencing. In addition, the levels of tyrosine hydroxylase (TH), glutathione peroxidase 4 (GPX4), and ferritin heavy chain 1 (FTH1) in SN were measured. In comparison to the model group, the moxibustion group showed a significantly greater TH immunoreactivity and a higher behavioural score. In particular, moxibustion led to an increase in the number and morphological stability of SN neural cells. The functional pathway analysis showed that DEGs are closely related to the ferroptosis pathway. GPX4 and FTH1 in the SN were significantly overexpressed in the moxibustion-treated rats with PD. Moxibustion can effectively reduce the death of SN neurons, decrease the occurrence of ferroptosis, and increase the TH activity to protect the neurons in rats with PD. The protective mechanism may be associated with suppression of the ferroptosis.


2013 ◽  
Vol 36 ◽  
pp. 63-71 ◽  
Author(s):  
Fabiana Morroni ◽  
Andrea Tarozzi ◽  
Giulia Sita ◽  
Cecilia Bolondi ◽  
Juan Manuel Zolezzi Moraga ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document