scholarly journals Scavenger community structure along an environmental gradient from boreal forest to alpine tundra in Scandinavia

2020 ◽  
Vol 10 (23) ◽  
pp. 12860-12869
Author(s):  
Gjermund Gomo ◽  
Lars Rød‐Eriksen ◽  
Harry P. Andreassen ◽  
Jenny Mattisson ◽  
Morten Odden ◽  
...  
2014 ◽  
Vol 74 ◽  
pp. 37-45 ◽  
Author(s):  
Hui Sun ◽  
Eeva Terhonen ◽  
Kaisa Koskinen ◽  
Lars Paulin ◽  
Risto Kasanen ◽  
...  

2004 ◽  
Vol 55 (1) ◽  
pp. 79 ◽  
Author(s):  
Alastair J. Hirst

The importance of abiotic factors in explaining patterns of estuarine benthic macrofaunal community structure was examined on a broad spatial scale across south-eastern Australia. Macrofaunal communities were surveyed using an Ekman grab and a modified epibenthic sled (dredge) at each sampling site: data for 24 environmental variables were also collected. Twenty-eight estuaries were sampled on a single occasion during late summer at three stratified locations within each estuary (upper, mid and lower). Macrofaunal community composition was best explained by a common environmental gradient summarising variation in both salinity and longitude. Hence, although the distribution of macrofaunal taxa can be clearly linked to changes in salinity, the geographical position of the sites along an east–west axis, rather than a generalised down-stream gradient, appears to best explain the data. This association was primarily linked to broad-scale changes in estuarine morphology across the geographical range of this survey. A sediment-based environmental gradient among grab samples, but not dredge samples, reflected the largely infaunal nature of the grab samples. In general, the present survey did not support the classification of estuarine assemblages on the basis of a range of physical parameters but, instead, emphasised the continuity of estuarine benthic macrofaunal community structure on a broad spatial scale.


1995 ◽  
Vol 73 (6) ◽  
pp. 943-953 ◽  
Author(s):  
Pampang Parikesit ◽  
Douglas W. Larson ◽  
Uta Matthes-Sears

Plant community structure and soil characteristics were quantitatively studied along forested cliff edges of the Niagara Escarpment in southern Ontario, Canada. The objective of the study was to try to differentiate between the effects of two gradients on vegetation structure: the environmental gradient between the cliff edge and dense forest, and an anthropogenic gradient, generated by the presence of major hiking trails parallel to the cliff edges. Species frequencies were determined along 69 transects distributed over eight sites with different amounts of past and present trampling disturbance. The data were analyzed using cluster and ordination analysis as well as analyses of variance. The results showed that soil characteristics were the major influence organizing the vegetation of cliff-edge forests and that soil properties and plant community structure were more strongly influenced by anthropogenic factors than by the environmental gradient between cliff edge and forest. Trampled plots had some properties in common with cliff-edge plots. Species richness was highest at intermediate trail-use levels; abandonment of heavily disturbed trails resulted in the restoration of species richness, but most new colonizing plants were disturbance-tolerant ruderals. Soil properties did not completely recover even after 10 years of trail abandonment. The results suggest that the current use of cliff edges along the Niagara Escarpment is nonsustainable, and reversing its effects on cliff-edge forest structure may take a considerable amount of time. Key words: Niagara Escarpment, plant community ecology, disturbance, trampling, cluster analysis, ordination.


Sign in / Sign up

Export Citation Format

Share Document