Identification of time-varying Wiener systems with unknown parameters

2010 ◽  
Vol 93 (4) ◽  
pp. 1-9 ◽  
Author(s):  
Yasuhide Kobayashi ◽  
Yuzuru Shiotani ◽  
Shinichi Hikita ◽  
Kazuya Nomura
2008 ◽  
Vol 128 (7) ◽  
pp. 1102-1109
Author(s):  
Yasuhide Kobayashi ◽  
Yuzuru Shiotani ◽  
Shinichi Hikita ◽  
Kazuya Nomura

2019 ◽  
Vol 33 (29) ◽  
pp. 1950351 ◽  
Author(s):  
Dawei Ding ◽  
Xiaolei Yao ◽  
Hongwei Zhang

In this paper, the complex projection synchronization problem of fractional complex-valued dynamic networks is investigated. Considering the time-varying coupling and unknown parameters of the fractional order complex network, several decentralized adaptive strategies are designed to adjust the coupling strength and controller feedback gain in order to investigate the complex projection synchronization problem of the system. Moreover, based on the designed identification law, the uncertain parameters in the network can be estimated. Using adaptive law which balances the time-varying coupling strength and the feedback gain of the controller, some sufficient conditions are obtained for the complex projection synchronization of complex networks. Finally, numerical simulation examples are provided to illustrate the efficiency of the complex projection synchronization strategies of the fractional order complex dynamic networks.


2019 ◽  
Vol 19 (05) ◽  
pp. 1950040 ◽  
Author(s):  
KEXIANG LI ◽  
XUAN LIU ◽  
JIANHUA ZHANG ◽  
MINGLU ZHANG ◽  
ZIMIN HOU

The flexibility of body joints plays an important role in daily life, particularly when performing high-precision rapid pose switching. Importantly, understanding the characteristics of human joint movement is necessary for constructing robotic joints with the softness of humanoid joints. A novel method for estimating continuous motion and time-varying stiffness of the human elbow joint was proposed in the current study, which was based on surface electromyography (sEMG). We used the Hill-based muscle model (HMM) to establish a continuous motion estimation model (CMEM) of the elbow joint, and the genetic algorithm (GA) was used to optimize unknown parameters. Muscle short-range stiffness (SRS) was then used to characterize muscle stiffness, and a joint kinetic equation was used to express the relationship between skeletal muscle stiffness and elbow joint stiffness. Finally, we established a time-varying stiffness estimation model (TVSEM) of the elbow joint based on the CMEM. In addition, five subjects were tested to verify the performance of the CMEM and TVSEM. The total average root-mean-square errors (RMSEs) of the CMEM with the optimal trials were 0.19[Formula: see text]rad and 0.21[Formula: see text]rad and the repeated trials were 0.24[Formula: see text]rad and 0.25[Formula: see text]rad, with 1.25-kg and 2.5[Formula: see text]kg-loads, respectively. The values of elbow joint stiffness ranged from 0–40[Formula: see text]Nm/rad for different muscle activities, which were estimated by the TVSEM.


2014 ◽  
Vol 26 (12) ◽  
pp. 2669-2691 ◽  
Author(s):  
Terence D. Sanger

Human movement differs from robot control because of its flexibility in unknown environments, robustness to perturbation, and tolerance of unknown parameters and unpredictable variability. We propose a new theory, risk-aware control, in which movement is governed by estimates of risk based on uncertainty about the current state and knowledge of the cost of errors. We demonstrate the existence of a feedback control law that implements risk-aware control and show that this control law can be directly implemented by populations of spiking neurons. Simulated examples of risk-aware control for time-varying cost functions as well as learning of unknown dynamics in a stochastic risky environment are provided.


Author(s):  
Ahmad M. El-Nagar ◽  
Tarek R. Khalifa ◽  
Mohamed A. El-Brawany ◽  
Mohammad El-Bardini ◽  
Essam A.G. El-Araby

2000 ◽  
Vol 48 (6) ◽  
pp. 1676-1686 ◽  
Author(s):  
N.J. Bershad ◽  
P. Celka ◽  
J.-M. Vesin

Sign in / Sign up

Export Citation Format

Share Document