scholarly journals Influence of climate, soil, and land cover on plant species distribution in the European Alps

2020 ◽  
Author(s):  
Yohann Chauvier ◽  
Wilfried Thuiller ◽  
Philipp Brun ◽  
Sébastien Lavergne ◽  
Patrice Descombes ◽  
...  
PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12560
Author(s):  
Francesco Ceresa ◽  
Petra Kranebitter ◽  
Juan S. Monrós ◽  
Franco Rizzolli ◽  
Mattia Brambilla

Unravelling the environmental factors driving species distribution and abundance is crucial in ecology and conservation. Both climatic and land cover factors are often used to describe species distribution/abundance, but their interrelations have been scarcely investigated. Climatic factors may indeed affect species both directly and indirectly, e.g., by influencing vegetation structure and composition. We aimed to disentangle the direct and indirect effects (via vegetation) of local temperature on bird abundance across a wide elevational gradient in the European Alps, ranging from montane forests to high-elevation open areas. In 2018, we surveyed birds by using point counts and collected fine-scale land cover and temperature data from 109 sampling points. We used structural equation modelling to estimate direct and indirect effects of local climate on bird abundance. We obtained a sufficient sample for 15 species, characterized by a broad variety of ecological requirements. For all species we found a significant indirect effect of local temperatures via vegetation on bird abundance. Direct effects of temperature were less common and were observed in seven woodland/shrubland species, including only mountain generalists; in these cases, local temperatures showed a positive effect, suggesting that on average our study area is likely colder than the thermal optimum of those species. The generalized occurrence of indirect temperature effects within our species set demonstrates the importance of considering both climate and land cover changes to obtain more reliable predictions of future species distribution/abundance. In fact, many species may be largely tracking suitable habitat rather than thermal niches, especially among homeotherm organisms like birds.


Fire Ecology ◽  
2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Jan W. van Wagtendonk ◽  
Peggy E. Moore ◽  
Julie L. Yee ◽  
James A. Lutz

Abstract Background The effects of climate on plant species ranges are well appreciated, but the effects of other processes, such as fire, on plant species distribution are less well understood. We used a dataset of 561 plots 0.1 ha in size located throughout Yosemite National Park, in the Sierra Nevada of California, USA, to determine the joint effects of fire and climate on woody plant species. We analyzed the effect of climate (annual actual evapotranspiration [AET], climatic water deficit [Deficit]) and fire characteristics (occurrence [BURN] for all plots, fire return interval departure [FRID] for unburned plots, and severity of the most severe fire [dNBR]) on the distribution of woody plant species. Results Of 43 species that were present on at least two plots, 38 species occurred on five or more plots. Of those 38 species, models for the distribution of 13 species (34%) were significantly improved by including the variable for fire occurrence (BURN). Models for the distribution of 10 species (26%) were significantly improved by including FRID, and two species (5%) were improved by including dNBR. Species for which distribution models were improved by inclusion of fire variables included some of the most areally extensive woody plants. Species and ecological zones were aligned along an AET-Deficit gradient from cool and moist to hot and dry conditions. Conclusions In fire-frequent ecosystems, such as those in most of western North America, species distribution models were improved by including variables related to fire. Models for changing species distributions would also be improved by considering potential changes to the fire regime.


Wetlands ◽  
2014 ◽  
Vol 34 (5) ◽  
pp. 927-942 ◽  
Author(s):  
Michael Murray-Hudson ◽  
Piotr Wolski ◽  
Frances Murray-Hudson ◽  
Mark T. Brown ◽  
Keotshephile Kashe

Plant Ecology ◽  
2008 ◽  
Vol 200 (1) ◽  
pp. 91-104 ◽  
Author(s):  
Christian Schöb ◽  
Peter M. Kammer ◽  
Philippe Choler ◽  
Heinz Veit

2019 ◽  
Vol 43 (4) ◽  
pp. 273-283
Author(s):  
Xiao-Tong LIU ◽  
Quan YUAN ◽  
Jian NI ◽  

Ecohydrology ◽  
2010 ◽  
Vol 4 (6) ◽  
pp. 744-756 ◽  
Author(s):  
Xiaomei Fan ◽  
Bas Pedroli ◽  
Gaohuan Liu ◽  
Hongguang Liu ◽  
Chuangye Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document