An integrated modelling framework of catchment-scale ecohydrological processes: 2. The role of water subsidy by overland flow on vegetation dynamics in a semi-arid catchment

Ecohydrology ◽  
2013 ◽  
Vol 7 (2) ◽  
pp. 815-827 ◽  
Author(s):  
Guo-Yue Niu ◽  
Peter A. Troch ◽  
Claudio Paniconi ◽  
Russell L. Scott ◽  
Matej Durcik ◽  
...  
Ecohydrology ◽  
2013 ◽  
Vol 7 (2) ◽  
pp. 427-439 ◽  
Author(s):  
Guo-Yue Niu ◽  
Claudio Paniconi ◽  
Peter A. Troch ◽  
Russell L. Scott ◽  
Matej Durcik ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1202
Author(s):  
Gwenaël Imfeld ◽  
Sylvain Payraudeau ◽  
Julien Tournebize ◽  
Sabine Sauvage ◽  
Francis Macary ◽  
...  

Ponds in agricultural areas are ubiquitous water retention systems acting as reactive biogeochemical hotspots controlling pesticide dissipation and transfer at the catchment scale. Several issues need to be addressed in order to understand, follow-up and predict the role of ponds in limiting pesticide transfer at the catchment scale. In this review, we present a critical overview of functional processes underpinning pesticide dissipation in ponds. We highlight the need to distinguish degradative and non-degradative processes and to understand the role of the sediment-water interface in pesticide dissipation. Yet it is not well-established how pesticide dissipation in ponds governs the pesticide transfer at the catchment scale under varying hydro-climatic conditions and agricultural operation practices. To illustrate the multi-scale and dynamic aspects of this issue, we sketch a modelling framework integrating the role of ponds at the catchment scale. Such an integrated framework can improve the spatial prediction of pesticide transfer and risk assessment across the catchment-ponds-river continuum to facilitate management rules and operations.


2013 ◽  
Vol 10 (2) ◽  
pp. 1769-1817
Author(s):  
E. Vannametee ◽  
D. Karssenberg ◽  
M. R. Hendriks ◽  
M. F. P. Bierkens

Abstract. This paper presents an evaluation of the closure relation for Hortonian runoff that explicitly accounts for sub-REW process heterogeneity and scale effects, proposed in Vannametee et al. (2012). We apply the closure relation, which is embedded in an event-based rainfall-runoff model developed under the REW framework, to a 15 km2 catchment in the French Alps. The scaling parameters in the closure relation are directly estimated using local and thus observable REW properties and rainstorm characteristics. Evaluation of the simulation results against the observed discharge indicates good performance in reproducing the hydrograph and discharge volume, even without calibration. The discharge prediction exhibits a significant improvement when the closure relation is calibrated with catchment-scale runoff. Our closure relation also yields better predictions when compared with results from a benchmark closure relation that does not consider scale effects. Calibration is done by only changing one of the REW observables, i.e. hydraulic conductivity, as that determines the scaling parameters, using a single prefactor for the entire catchment. This enables the calibration of the (semi)distributed modelling framework in this study to use only a single parameter. The results without calibration suggest that, in the absence of discharge observations, reasonable estimates of catchment-scale runoff responses are possibly based on observations at the sub-REW (i.e. plot) scale. Thus, our study provides a platform for the future development of low-dimensional and robust semi-distributed, physically-based discharge models in ungauged catchments.


2017 ◽  
Author(s):  
Suzanne P. Anderson ◽  
◽  
Adam Wlostowski ◽  
Sheila Murphy ◽  
Nathan D. Rock ◽  
...  

Oecologia ◽  
2021 ◽  
Author(s):  
Peng He ◽  
Pierre-Olivier Montiglio ◽  
Marius Somveille ◽  
Mauricio Cantor ◽  
Damien R. Farine

AbstractBy shaping where individuals move, habitat configuration can fundamentally structure animal populations. Yet, we currently lack a framework for generating quantitative predictions about the role of habitat configuration in modulating population outcomes. To address this gap, we propose a modelling framework inspired by studies using networks to characterize habitat connectivity. We first define animal habitat networks, explain how they can integrate information about the different configurational features of animal habitats, and highlight the need for a bottom–up generative model that can depict realistic variations in habitat potential connectivity. Second, we describe a model for simulating animal habitat networks (available in the R package AnimalHabitatNetwork), and demonstrate its ability to generate alternative habitat configurations based on empirical data, which forms the basis for exploring the consequences of alternative habitat structures. Finally, we lay out three key research questions and demonstrate how our framework can address them. By simulating the spread of a pathogen within a population, we show how transmission properties can be impacted by both local potential connectivity and landscape-level characteristics of habitats. Our study highlights the importance of considering the underlying habitat configuration in studies linking social structure with population-level outcomes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Simon Kapitza ◽  
Pham Van Ha ◽  
Tom Kompas ◽  
Nick Golding ◽  
Natasha C. R. Cadenhead ◽  
...  

AbstractClimate change threatens biodiversity directly by influencing biophysical variables that drive species’ geographic distributions and indirectly through socio-economic changes that influence land use patterns, driven by global consumption, production and climate. To date, no detailed analyses have been produced that assess the relative importance of, or interaction between, these direct and indirect climate change impacts on biodiversity at large scales. Here, we apply a new integrated modelling framework to quantify the relative influence of biophysical and socio-economically mediated impacts on avian species in Vietnam and Australia and we find that socio-economically mediated impacts on suitable ranges are largely outweighed by biophysical impacts. However, by translating economic futures and shocks into spatially explicit predictions of biodiversity change, we now have the power to analyse in a consistent way outcomes for nature and people of any change to policy, regulation, trading conditions or consumption trend at any scale from sub-national to global.


Sign in / Sign up

Export Citation Format

Share Document