alternative habitat
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 16)

H-INDEX

10
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Linyi Zhang ◽  
Glen Ray Hood ◽  
Jim R Ott ◽  
Scott P Egan

Reinforcement is an evolutionary process whereby increased prezygotic reproductive isolation evolves in response to the cost of hybridization. Despite theory predicting that multiple prezygotic barriers can evolve via reinforcement, most empirical studies examine a single barrier. We test novel predictions for the reinforcement of both habitat isolation and sexual isolation between ecologically divergent lineages under asymmetric migration: the lineage that emigrates more should evolve stronger habitat isolation due to the lower fitness of immigrants in the alternative habitat, while the lineage that receives more immigrants should exhibit stronger sexual isolation due to the lower fitness of hybrids. We found both signatures of reinforcement in two sympatric sister species of gall wasps that are host specific to the southern live oaks, Quercus virginiana and Q. geminata, respectively. Specifically, we observed stronger habitat isolation in the species with higher emigration rates, Belonocnema treatae, and stronger sexual isolation in the species facing more immigrants, B. fossoria. In contrast, comparisons of both species to a third, allopatric, species showed that B. kinseyi exhibited both lower habitat isolation and sexual isolation than the sympatric species, consistent with the classic predictions of reinforcement. Our study provides a rare examination of the interplay of ecology and geography in the evolution of multiple reproductive barriers to gene flow. Given that asymmetric migration between ecologically divergent lineages increasingly appears to be the rule rather than the exception, concomitant asymmetries in the strength of habitat and sexual isolation could be more widespread than currently understood.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258251
Author(s):  
Timothy J. Beechie ◽  
Caleb Fogel ◽  
Colin Nicol ◽  
Britta Timpane-Padgham

Identifying necessary stream and watershed restoration actions requires quantifying natural potential habitat conditions to diagnose habitat change and evaluate restoration potential. We used three general methods of quantifying natural potential: historical maps and survey notes, contemporary reference sites, and models. Historical information was available only for the floodplain habitat analysis. We used contemporary reference sites to estimate natural potential habitat conditions for wood abundance, riparian shade, main channel length, and side channel length. For fine sediment, temperature, and beaver ponds we relied on models. We estimated a 90% loss of potential beaver pond area, 91% loss of side-channel length, and 92% loss or degradation of floodplain marshes and ponds. Spawning habitat area change due to wood loss ranged from -23% to -68% across subbasins. Other changes in habitat quantity or quality were smaller—either in magnitude or spatial extent—including rearing habitat areas, stream temperature, and accessible stream length. Historical floodplain habitat mapping provided the highest spatial resolution and certainty in locations and amounts of floodplain habitat lost or degraded, whereas use of the contemporary reference information provided less site specificity for wood abundance and side-channel length change. The models for fine sediment levels and beaver pond areas have the lowest reach-specific certainty, whereas the model of temperature change has higher certainty because it is based on a detailed riparian inventory. Despite uncertainties at the reach level, confidence in subbasin-level estimates of habitat change is moderate to high because accuracy increases as data are aggregated over multiple reaches. Our results show that the largest habitat losses were floodplain and beaver pond habitats, but use of these habitat change results in salmon life-cycle models can illustrate how the potential benefits of alternative habitat restoration actions varies among species with differing habitat preferences.


2021 ◽  
Vol 9 ◽  
Author(s):  
Chloe Bracis ◽  
Aaron J. Wirsing

Predator reintroductions are often used as a means of restoring the ecosystem services that these species can provide. The ecosystem consequences of predator reintroduction depend on how prey species respond. Yet, to date, we lack a general framework for predicting these responses. To address this knowledge gap, we modeled the impacts of predator reintroduction on foragers as a function of predator characteristics (habitat domain; i.e., area threatened) and prey characteristics (knowledge of alternative habitat and exploratory tendency). Foraging prey had the capacity to both remember and return to good habitat and to remember and avoid predators. In general, we found that forager search time increased and consumption decreased after predator introduction. However, predator habitat domain played a key role in determining how much prey habitat use changed following reintroduction, and the forager's knowledge of alternative habitats and exploratory inclinations affected what types of habitat shifts occurred. Namely, habitat shifts and consumption sacrifices by prey were extreme in some cases, particularly when they were pushed far from their starting locations by broad-domain predators, whereas informed foragers spent less time searching and displayed smaller reductions to consumption than their naïve counterparts following predator exposure. More exploratory foragers exhibited larger habitat shifts, thereby sacrificing consumption but reducing encounters by relocating to refugia, whereas less exploratory foragers managed risk in place and consequently suffered increased encounters while consuming more resources. By implication, reintroductions of predators with broad habitat domains are especially likely to impose foraging and movements costs on prey, but forager spatial memory state can mitigate these effects, as informed foragers can better access alternate habitat and avoid predators with smaller reductions in consumption.


Hydrobiologia ◽  
2021 ◽  
Author(s):  
María Cielo Bazterrica ◽  
Agustina Méndez Casariego ◽  
Graciela Álvarez ◽  
Sandra Obenat ◽  
Pedro J. Barón

2021 ◽  
Vol 288 (1955) ◽  
pp. 20211220
Author(s):  
Calandra Q. Stanley ◽  
Michele R. Dudash ◽  
Thomas B. Ryder ◽  
W. Gregory Shriver ◽  
Peter P. Marra

Identifying environmental correlates driving space-use strategies can be critical for predicting population dynamics; however, such information can be difficult to attain for small mobile species such as migratory songbirds. We combined radio-telemetry and high-resolution GPS tracking to examine space-use strategies under different moisture gradients for wood thrush ( Hylocichla mustelina ). We explored the role moisture plays in driving food abundance and, in turn, space-use strategies at a wintering site in Belize across 3 years. Individuals occupying drier habitats experienced lower food abundance and poorer body condition. Using data from our radio-tracked study population and GPS tracking from across five breeding populations, we detected low rates of overwinter site persistence across the wood thrush wintering range. Contrary to expectations, individuals in wetter habitats were more likely to engage in permanent mid-winter relocations, up to 148 km. We suggest facultative movements are instead a condition-dependent strategy that enables wintering wood thrush to locate alternative habitat as food availability declines throughout the dry season. Increased aridity is predicted across the wintering range of wood thrush, and future research should delve deeper into understanding how moisture impacts within and between season space-use dynamics and its ultimate impact on the population dynamics of this declining species.


Oecologia ◽  
2021 ◽  
Author(s):  
Peng He ◽  
Pierre-Olivier Montiglio ◽  
Marius Somveille ◽  
Mauricio Cantor ◽  
Damien R. Farine

AbstractBy shaping where individuals move, habitat configuration can fundamentally structure animal populations. Yet, we currently lack a framework for generating quantitative predictions about the role of habitat configuration in modulating population outcomes. To address this gap, we propose a modelling framework inspired by studies using networks to characterize habitat connectivity. We first define animal habitat networks, explain how they can integrate information about the different configurational features of animal habitats, and highlight the need for a bottom–up generative model that can depict realistic variations in habitat potential connectivity. Second, we describe a model for simulating animal habitat networks (available in the R package AnimalHabitatNetwork), and demonstrate its ability to generate alternative habitat configurations based on empirical data, which forms the basis for exploring the consequences of alternative habitat structures. Finally, we lay out three key research questions and demonstrate how our framework can address them. By simulating the spread of a pathogen within a population, we show how transmission properties can be impacted by both local potential connectivity and landscape-level characteristics of habitats. Our study highlights the importance of considering the underlying habitat configuration in studies linking social structure with population-level outcomes.


2021 ◽  
Author(s):  
Catheline Y.M. Froehlich ◽  
Siobhan J. Heatwole ◽  
O. Selma Klanten ◽  
Marian Y. L. Wong

While habitat is often a limiting resource for group-living animals, we have yet to understand what aspects of habitat are particularly important for the maintenance of sociality. As anthropogenic disturbances rapidly degrade the quality of many habitats, site-attached animals are facing additional stressors that may alter the trade-offs of moving or remaining philopatric. Here we examined how habitat health, size and saturation affect movement decisions of a coral-dwelling goby, Gobiodon quinquestrigatus, that resides within bleaching-susceptible Acropora coral hosts. To assess effects of habitat health, we translocated individuals far from their home corals into dead corals with the choice of adjacent healthy corals. To assess effects of habitat size and saturation, we manipulated coral sizes and the number of residents in healthy corals. Remarkably, 55% of gobies returned home regardless of treatment, 7% stayed in the new coral, and the rest were not found. Contrary to expectations, habitat factors did not affect how costs of movement influence group-living decisions in this species. These site-attached fishes preferred to home instead of choosing alternative habitat, which suggests a surprising awareness of their ecological surroundings. However, disregarding alternative high-quality habitat is concerning as it may affect population persistence under conditions of rapid habitat degradation.


Diversity ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 434
Author(s):  
Linda Eggertsen ◽  
Whitney Goodell ◽  
César A. M. M. Cordeiro ◽  
Thiago C. Mendes ◽  
Guilherme O. Longo ◽  
...  

Spatial configuration of habitat types in multihabitat seascapes influence ecological function through links of biotic and abiotic processes. These connections, for example export of organic matter or fishes as mobile links, define ecosystem functionality across broader spatial scales. Herbivory is an important ecological process linked to ecosystem resilience, but it is not clear how herbivory relates to seascape configuration. We studied how herbivory and bioerosion by 3 species of parrotfish were distributed in a multi-habitat tropical seascape in the Western Indian Ocean (WIO). We surveyed the abundance of three species with different life histories—Leptoscarus vaigiensis (seagrass species), Scarus ghobban (juvenile-seagrass/adults-reefs) and Scarus rubroviolaceus (reef species) —in seagrass meadows and on reefs and recorded their selectivity of feeding substrate in the two habitats. Herbivory rates for L. vaigiensis and S. ghobban and bioerosion for S. rubroviolaceus were then modelled using bite rates for different size classes and abundance and biomass data along seascape gradients (distance to alternative habitat types such as land, mangrove and seagrass). Bioerosion by S. rubroviolaceus was greatest on reefs far from seagrass meadows, while herbivory rates by S. ghobban on reefs displayed the opposite pattern. Herbivory in seagrass meadows was greatest in meadows close to shore, where L. vaigiensis targeted seagrass leaves and S. ghobban the epiphytes growing on them. Our study shows that ecological functions performed by fish are not equally distributed in the seascape and are influenced by fish life history and the spatial configuration of habitats in the seascape. This has implications for the resilience of the system, in terms of spatial heterogeneity of herbivory and bioerosion and should be considered in marine spatial planning and fisheries management.


Oikos ◽  
2020 ◽  
Vol 130 (1) ◽  
pp. 133-142
Author(s):  
Micaela Santos ◽  
Luciano Cagnolo ◽  
Tomas Roslin ◽  
Emmanuel F. Ruperto ◽  
María Laura Bernaschini ◽  
...  

2020 ◽  
Author(s):  
Peng He ◽  
Pierre-Olivier Montiglio ◽  
Marius Somveille ◽  
Mauricio Cantor ◽  
Damien R. Farine

AbstractBy shaping where individuals move, habitat configuration can fundamentally structure animal populations. Yet, we currently lack a framework for generating quantitative predictions about the role of habitat configuration in modulating population outcomes. For example, it is well known that the social structure of animal populations can shape spreading dynamics, but it remains underexplored to what extent such dynamics are determined by the underlying habitat configuration. To address this gap, we propose a framework and model inspired by studies using networks to characterize habitat connectivity. We first define animal habitat networks, explain how they can integrate information about the different configurational features of animals’ habitats, and highlight the need for a bottom-up generative model that can depict realistic variations in habitat structural connectivity. Second, we describe a model for simulating animal habitat networks (available in the R package AnimalHabitatNetwork), and demonstrate its ability to generate alternative habitat configurations based on empirical data, which forms the basis for exploring the consequences of alternative habitat structures. Finally, we use our framework to demonstrate how transmission properties, such as the spread of a pathogen, can be impacted by both local connectivity and landscape-level characteristics of the habitat. Our study highlights the importance of considering the underlying habitat configuration in studies linking social structure with population-level outcomes.


Sign in / Sign up

Export Citation Format

Share Document