scholarly journals Prior disturbance legacy effects on plant recovery post‐high‐severity wildfire

Ecosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Elle J. Bowd ◽  
David P. Blair ◽  
David B. Lindenmayer
Author(s):  
Yogendra K. Karna ◽  
Trent D. Penman ◽  
Cristina Aponte ◽  
Lauren T. Bennett

Fire-tolerant eucalypt forests of south eastern Australia are assumed to fully recover from even the most intense fires but surprisingly very few studies have quantitatively assessed that recovery. Accurate assessment of horizontal and vertical attributes of tree crowns after fire is essential to understand the fire’s legacy effects on tree growth and on forest structure. In this study, we quantitatively assessed individual tree crowns 8.5 years after a 2009 wildfire that burnt extensive areas of eucalypt forest in temperate Australia. We used airborne lidar data validated with field measurements to estimate multiple metrics that quantified the cover, density, and vertical distribution of individual-tree crowns in 51 plots of 0.05 ha in fire-tolerant eucalypt forest across four wildfire severity types (unburnt, low, moderate, high). Significant differences in the field-assessed mean height of fire scarring as a proportion of tree height, and in the proportions of trees with epicormic (stem) resprouts were consistent with the gradation in fire severity. Linear mixed-effects models indicated persistent effects of both moderate- and high-severity wildfire on tree crown architecture. Trees at high-severity sites had significantly less crown projection area and live crown width as a proportion of total crown width than those at unburnt and low-severity sites. Significant differences in lidar-based metrics (crown cover, evenness, leaf area density profiles) indicated that tree crowns at moderate- and high-severity sites were comparatively narrow and more evenly distributed down the tree stem. These conical-shaped crowns contrasted sharply with the rounded crowns of trees at unburnt and low-severity sites, and likely influenced both tree productivity and the accuracy of biomass allometric equations for nearly a decade after the fire. Our data provide a clear example of the utility of airborne lidar data for quantifying the impacts of disturbances at the scale of individual trees. Quantified effects of contrasting fire severities on the structure of resprouter tree crowns provide a strong basis for interpreting post-fire patterns in forest canopies and vegetation profiles in lidar and other remotely-sensed data at larger scales.


2019 ◽  
Vol 11 (20) ◽  
pp. 2433 ◽  
Author(s):  
Yogendra K. Karna ◽  
Trent D. Penman ◽  
Cristina Aponte ◽  
Lauren T. Bennett

The fire-tolerant eucalypt forests of south eastern Australia are assumed to fully recover from even the most intense fires; however, surprisingly, very few studies have quantitatively assessed that recovery. The accurate assessment of horizontal and vertical attributes of tree crowns after fire is essential to understand the fire’s legacy effects on tree growth and on forest structure. In this study, we quantitatively assessed individual tree crowns 8.5 years after a 2009 wildfire that burnt extensive areas of eucalypt forest in temperate Australia. We used airborne LiDAR data validated with field measurements to estimate multiple metrics that quantified the cover, density, and vertical distribution of individual-tree crowns in 51 plots of 0.05 ha in fire-tolerant eucalypt forest across four wildfire severity types (unburnt, low, moderate, high). Significant differences in the field-assessed mean height of fire scarring as a proportion of tree height and in the proportions of trees with epicormic (stem) resprouts were consistent with the gradation in fire severity. Linear mixed-effects models indicated persistent effects of both moderate and high-severity wildfire on tree crown architecture. Trees at high-severity sites had significantly less crown projection area and live crown width as a proportion of total crown width than those at unburnt and low-severity sites. Significant differences in LiDAR -based metrics (crown cover, evenness, leaf area density profiles) indicated that tree crowns at moderate and high-severity sites were comparatively narrow and more evenly distributed down the tree stem. These conical-shaped crowns contrasted sharply with the rounded crowns of trees at unburnt and low-severity sites and likely influenced both tree productivity and the accuracy of biomass allometric equations for nearly a decade after the fire. Our data provide a clear example of the utility of airborne LiDAR data for quantifying the impacts of disturbances at the scale of individual trees. Quantified effects of contrasting fire severities on the structure of resprouter tree crowns provide a strong basis for interpreting post-fire patterns in forest canopies and vegetation profiles in Light Detection and Ranging (LiDAR) and other remotely-sensed data at larger scales.


Forests ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 496
Author(s):  
Grace L. Parikh ◽  
Christopher R. Webster

Ungulate herbivory occurring within a forest plant community’s natural range of variation may help maintain species diversity. However, acute or chronically elevated levels of herbivory can produce dramatic changes in forest communities. For example, chronically high levels of herbivory by white-tailed deer (Odocoileus virginianus Zimmerman) in regions of historically low abundance at northern latitudes have dramatically altered forest community composition. In eastern hemlock (Tsuga canadensis L. Carrière) stands where deer aggregate during winter, high deer use has been associated with a shift towards deciduous species (i.e., maples [Acer spp.]) dominating the regeneration layer. Especially harsh winters can lead to deer population declines, which could facilitate regeneration of species that have been suppressed by browsing, such as hemlock. To enhance our understanding of how fluctuations in herbivory influence regeneration dynamics, we surveyed regeneration and deer use in 15 relict hemlock stands in the western Upper Peninsula of Michigan in 2007 and again in 2015. With the exception of small seedlings (0.04–0.24 m height), primarily maples whose abundance increased significantly (p < 0.05), we observed widespread significant declines (p < 0.05) in the abundance of medium (0.25 ≤ 1.4 m height) and large regeneration (>1.4 m tall ≤ 4 cm diameter at breast height) over the study period. Midway through our study period, the region experienced a high severity winter (i.e., “polar vortex”) which resulted in a substantial decline in the white-tailed deer population. Given the dominance of maples and dearth of hemlock in the seedling layer, the decline in the deer population may fail to forestall or possibly hasten the trend towards maple dominance of the regeneration layer as these stands recover from pulses of acute herbivory associated with high-severity winters and the press of chronically high herbivory that precedes them.


Fire Ecology ◽  
2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Jessie M. Dodge ◽  
Eva K. Strand ◽  
Andrew T. Hudak ◽  
Benjamin C. Bright ◽  
Darcy H. Hammond ◽  
...  

Abstract Background Fuel treatments are widely used to alter fuels in forested ecosystems to mitigate wildfire behavior and effects. However, few studies have examined long-term ecological effects of interacting fuel treatments (commercial harvests, pre-commercial thinnings, pile and burning, and prescribed fire) and wildfire. Using annually fitted Landsat satellite-derived Normalized Burn Ratio (NBR) curves and paired pre-fire treated and untreated field sites, we tested changes in the differenced NBR (dNBR) and years since treatment as predictors of biophysical attributes one and nine years after the 2007 Egley Fire Complex in Oregon, USA. We also assessed short- and long-term fuel treatment impacts on field-measured attributes one and nine years post fire. Results One-year post-fire burn severity (dNBR) was lower in treated than in untreated sites across the Egley Fire Complex. Annual NBR trends showed that treated sites nearly recovered to pre-fire values four years post fire, while untreated sites had a slower recovery rate. Time since treatment and dNBR significantly predicted tree canopy and understory green vegetation cover in 2008, suggesting that tree canopy and understory vegetation cover increased in areas that were treated recently pre fire. Live tree density was more affected by severity than by pre-fire treatment in either year, as was dead tree density one year post fire. In 2008, neither treatment nor severity affected percent cover of functional groups (shrub, graminoid, forb, invasive, and moss–lichen–fungi); however, by 2016, shrub, graminoid, forb, and invasive cover were higher in high-severity burn sites than in low-severity burn sites. Total fuel loads nine years post fire were higher in untreated, high-severity burn sites than any other sites. Tree canopy cover and density of trees, saplings, and seedlings were lower nine years post fire than one year post fire across treatments and severity, whereas live and dead tree basal area, understory surface cover, and fuel loads increased. Conclusions Pre-fire fuel treatments effectively lowered the occurrence of high-severity wildfire, likely due to successful pre-fire tree and sapling density and surface fuels reduction. This study also quantified the changes in vegetation and fuels from one to nine years post fire. We suggest that low-severity wildfire can meet prescribed fire management objectives of lowering surface fuel accumulations while not increasing overstory tree mortality.


Sign in / Sign up

Export Citation Format

Share Document