Broad aggressive interactions among African carnivores suggest intraguild killing is driven by more than competition

Ecology ◽  
2021 ◽  
Author(s):  
Gonçalo Curveira‐Santos ◽  
Laura Gigliotti ◽  
André P. Silva ◽  
Chris Sutherland ◽  
Stefan Foord ◽  
...  
2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 5-5
Author(s):  
Katie J Heiderscheit ◽  
Erin Deters ◽  
Alyssa Freestone ◽  
Joshua Peschel ◽  
Stephanie L Hansen

Abstract The objective was to investigate effects of 18 h feed and water restriction or transit on cattle behavior. Angus-cross steers (36; 353 ± 33 kg) were housed in pens of 6 and assigned to treatments: control (CON), full access to feed and water; deprived (DEPR), no feed or water for 18 h; or transported (TRANS), trucked for 18 h. Individual BW (n = 12 steers/treatment) was recorded on d 0, 1, 3, 8, and 14, and individual dry matter intake (DMI) was determined via GrowSafe bunks. Bunk displacements on d 1 were recorded for each pen (n = 2 pens/treatment) by one trained observer continuously for 2 h in 10 min intervals via video analysis. Steer need preferences were assessed as time individuals took to perform behaviors (eat, drink, lay) after treatments ended on d 1. Data were analyzed using Proc Mixed of SAS with fixed effect of treatment; displacements, BW, and DMI were analyzed as repeated measures. Upon return to pens, time to eat or drink did not differ between DEPR and TRANS (P ≥ 0.17), but time to lay was 70.5 min for DEPR vs. 16.5 min for TRANS (P = 0.01). Displacements were greater for DEPR than CON or TRANS during the first 90 min after accessing feed, while CON displaced more frequently than TRANS for the first 30 min (treatment × time; P = 0.02). While DMI for TRANS was not recovered until d 2, DEPR and CON had similar DMI on d 1 (treatment × day; P < 0.01). Similarly, TRANS BW were, and DEPR tended to be, lesser than CON on d 1; however, BW among treatments were not different on other days (treatment × day; P < 0.01). Thus, restricting feed increases aggressive interactions at the bunk and cattle trucked long distances are quick to lay down when allowed. These behaviors should be considered when managing an unintentional feed restriction event or receiving cattle into the feedlot.


Data in Brief ◽  
2021 ◽  
Vol 34 ◽  
pp. 106697
Author(s):  
Ahmad Yaser Alhaddad ◽  
John-John Cabibihan ◽  
Andrea Bonarini

2010 ◽  
Vol 57 (4-5) ◽  
pp. 381-389 ◽  
Author(s):  
Devaleena S. Pradhan ◽  
Amy E.M. Newman ◽  
Douglas W. Wacker ◽  
John C. Wingfield ◽  
Barney A. Schlinger ◽  
...  

2021 ◽  
Vol 75 (7) ◽  
Author(s):  
Danielle Edmunds ◽  
Stuart Wigby ◽  
Jennifer C. Perry

AbstractAggressive behaviours occur throughout the animal kingdom and agonistic contests often govern access to resources. Nutrition experienced during development has the potential to influence aggressive behaviours in adults through effects on growth, energy budgets and an individual’s internal state. In particular, resource-poor developmental nutrition might decrease adult aggression by limiting growth and energy budgets, or alternatively might increase adult aggression by enhancing motivation to compete for resources. However, the direction of this relationship—and effects of developmental nutrition experienced by rivals—remains unknown in most species, limiting understanding of how early-life environments contribute to variation in aggression. We investigated these alternative hypotheses by assessing male-male aggression in adult fruit flies, Drosophila melanogaster, that developed on a low-, medium- or high-resource diet, manipulated via yeast content. We found that a low-resource developmental diet reduced the probability of aggressive lunges in adults, as well as threat displays against rivals that developed on a low-resource diet. These effects appeared to be independent of diet-related differences in body mass. Males performed relatively more aggression on a central food patch when facing rivals of a low-resource diet, suggesting that developmental diet affects aggressive interactions through social effects in addition to individual effects. Our finding that resource-poor developmental diets reduce male-male aggression in D. melanogaster is consistent with the idea that resource budgets mediate aggression and in a mass-independent manner. Our study improves understanding of the links between nutrition and aggression.Significance statementEarly-life nutrition can influence social behaviours in adults. Aggression is a widespread social behaviour with important consequences for fitness. Using the fruit fly, Drosophila melanogaster, we show that a poor developmental diet reduces aspects of adult aggressive behaviour in males. Furthermore, males perform more aggression near food patches when facing rivals of poor nutrition. This suggests that early-life nutrition affects aggressive interactions through social effects in addition to individual effects.


2018 ◽  
Vol 16 (1) ◽  
Author(s):  
Manuela L. Brandão ◽  
Gisele Colognesi ◽  
Marcela C. Bolognesi ◽  
Roselene S. Costa-Ferreira ◽  
Thaís B. Carvalho ◽  
...  

ABSTRACT Changes in water temperature may affect the aggressive behavior of aquatic organisms, such as fish, either by changing some physiological mechanisms or by increasing the probability of encounters between individuals as a result of variation in their swimming activity. In our study, we evaluated the influence of increasing and decreasing temperature on the aggressive behavior of the Neotropical cichlid fish Cichlasoma paranaense. Firstly, we tested the critical thermal maximum (CTMax) tolerated by this species. Then, we tested the effect of decreasing or increasing the water temperature in 6o C (starting at 27° C) on the aggressive interactions of fish under isolation or housed in groups. We found a CTMax value of 39° C for C. paranaense. We also observe that a 6° C decrease in water temperature lowers swimming activity and aggressive interactions in both isolated and group-housed fish, as expected. On the other hand, the increase in temperature had no effect on the fish’s aggressive behavior, neither for isolated nor for grouped fish. We concluded that C. paranaense shows high tolerance to elevated temperatures and, in turn, it does not affect aggressive behavior. Nevertheless, we cannot dismiss possible effects of elevated temperatures on aggressive interactions over longer periods.


Sign in / Sign up

Export Citation Format

Share Document