scholarly journals Water temperature affects aggressive interactions in a Neotropical cichlid fish

2018 ◽  
Vol 16 (1) ◽  
Author(s):  
Manuela L. Brandão ◽  
Gisele Colognesi ◽  
Marcela C. Bolognesi ◽  
Roselene S. Costa-Ferreira ◽  
Thaís B. Carvalho ◽  
...  

ABSTRACT Changes in water temperature may affect the aggressive behavior of aquatic organisms, such as fish, either by changing some physiological mechanisms or by increasing the probability of encounters between individuals as a result of variation in their swimming activity. In our study, we evaluated the influence of increasing and decreasing temperature on the aggressive behavior of the Neotropical cichlid fish Cichlasoma paranaense. Firstly, we tested the critical thermal maximum (CTMax) tolerated by this species. Then, we tested the effect of decreasing or increasing the water temperature in 6o C (starting at 27° C) on the aggressive interactions of fish under isolation or housed in groups. We found a CTMax value of 39° C for C. paranaense. We also observe that a 6° C decrease in water temperature lowers swimming activity and aggressive interactions in both isolated and group-housed fish, as expected. On the other hand, the increase in temperature had no effect on the fish’s aggressive behavior, neither for isolated nor for grouped fish. We concluded that C. paranaense shows high tolerance to elevated temperatures and, in turn, it does not affect aggressive behavior. Nevertheless, we cannot dismiss possible effects of elevated temperatures on aggressive interactions over longer periods.

1981 ◽  
Vol 8 (1) ◽  
pp. 203 ◽  
Author(s):  
AA Burbidge

Western swamp tortoise (Pseudemydura umbrina) was rediscovered in Western Australia in 1954. It is a relict species of a monotypic genus, of very restricted range and specialized habitat. Population was estimated to be 13 to 45 and decreasing at 1 of its 2 native reserves and to be 10 to 45 and static at the other reserve. It does not use permanent water, but lives and feeds in ephemeral winter swamps and spends the other 6 to 9 months of the year in refuges in leaf litter, under fallen branches or in holes in the ground, in contact with the soil. The tortoise is carnivorous and in the wild takes only live aquatic organisms. Captive adults will not take meat until they have starved for many months. Stomach of 1 female (Edward, pers. commun.) had aquatic crustaceans, chiefly Eulimnadia sp., with insects and insect larvae, mainly Coleoptera and Diptera. Study of faeces confirmed that observation had shown that small tadpoles and an aquatic earthworm (Eodrilus cornigravei) were eaten also. Reproduction, growth, activity relative to body and water temperature, and desiccation rate, were noted. One adult female tortoise was eaten by a fox. Foxes and bandicoots (Isoodon obesulus) eat eggs of other tortoises and would eat those of P. umbrina. Hatchlings may be eaten by large wading birds such as straw-necked ibis (Threskiornis spinicollis) and white-faced heron (Notophoyx novaehollandiae).


1976 ◽  
Vol 40 (5) ◽  
pp. 683-687 ◽  
Author(s):  
G. L. Wright

The critical thermal maximum (the colonic temperature of heat-induced convulsion and righting reflex loss) and thermoregulatory response of male mice were examined following I, exposure to colonic temperature (Tco) 42 degrees C; II, a single exposure to the critical thermal maximum (Tco 44 degrees C); AND III, acclimation at ambient temperatures of 15 or 30 degrees C for 14 days. The critical thermal maximum (CTM) was greater in 30 degrees C acclimated mice than 15 degrees C acclimated mice but was unchanged in mice surviving exposure to Tco 42 degrees C or the CTM. The heating time to apparent breakdown of thermoregulation coincident with an explosive rise in the Tco during exposure to ambient temperature 40.8 degrees C was increased (100%) during the 48-h period following exposure to Tco 42 degrees. It appeared that mice exposed to severe, short-term heat stress (Tco 42 degrees) undergo a compensatory increase in their thermoregulatory cooling capacity with little or no change in the upper temperature tolerated. The animals did, however, exhibit the capability for adaptive adjustments of the upper thermal limit during extended exposure to the more prolonged and less severe environmental heat stress of acclimation at 30 degrees C.


2018 ◽  
Vol 48 (4) ◽  
pp. 304-310 ◽  
Author(s):  
Thaís Billalba CARVALHO ◽  
Ellen Cristina Monteiro de SOUZA ◽  
Jaquelinne PINHEIRO-DA-SILVA ◽  
Marle Angélica VILLACORTA-CORREA

ABSTRACT Brycon amazonicus is a native Amazonian fish that is important for aquaculture in South America. Larval mortality is high in this species in intensive breeding systems due to aggressiveness among larvae. The present study investigated experimentally the effects of body size heterogeneity on the aggressive behavior and survival of B. amazonicus during the early stages of larval development. Two treatments (larvae groups with homogeneous and heterogeneous body size) were evaluated throughout early larval stages tested at six time points: 12, 24, 36, 48, 60 and 72 hours after hatching (HAH). Two experiments quantified, respectively, aggressive interactions and mortality rates among larvae at each time point. The frequency of aggressive interactions exhibited by the less aggressive larvae in each replicate was higher in the homogeneous size treatment. Aggressiveness was higher at 12 HAH, decreasing thereafter, and increasing again at 72 HAH. The mortality rate significantly increased with the larval stage, and was higher in the homogeneous than in the heterogeneous sized groups. Our results showed that aggressiveness in B. amazonicus larvae is affected by size variability and larval development stage. This knowledge about larval behavior is important to develop measures to improve larval health and survival in intensive production systems for this species.


2018 ◽  
Vol 30 (6) ◽  
pp. 333-344 ◽  
Author(s):  
James Bevington ◽  
Christopher P. McKay ◽  
Alfonso Davila ◽  
Ian Hawes ◽  
Yukiko Tanabe ◽  
...  

AbstractLake Untersee is a perennially ice-covered Antarctic lake that consists of two basins. The deepest basin, next to the Anuchin Glacier is aerobic to its maximum depth of 160 m. The shallower basin has a maximum depth of 100 m, is anoxic below 80 m, and is shielded from convective currents. The thermal profile in the anoxic basin is unusual in that the water temperature below 50 m is constant at 4°C but rises to 5°C between 70 m and 80 m depth, then drops to 3.7°C at the bottom. Field measurements were used to conduct a thermal and stability analysis of the anoxic basin. The shape of the thermal maximum implies two discrete locations of energy input, one of 0.11 W m-2 at 71 m depth and one of 0.06 W m-2 at 80 m depth. Heat from microbial activity cannot account for the required amount of energy at either depth. Instead, absorption of solar radiation due to an increase in water opacity at these depths can account for the required energy input. Hence, while microbial metabolism is not an important source of heat, biomass increases opacity in the water column resulting in greater absorption of sunlight.


2019 ◽  
Vol 49 (1) ◽  
pp. 230-237
Author(s):  
S M Starr ◽  
N E McIntyre

Abstract Current climate projections for the Great Plains of North America indicate markedly increased air temperatures by the end of the current century. Because the Great Plains contains >80,000 intermittent wetlands that serve as irreplaceable wildlife habitat, this projected warming may have profound effects throughout a continental-scale trophic network. However, little research has been done to determine how projected warming may affect the growth, development, or survival of even common species in this region. We conducted laboratory warming experiments, using an abundant amphibious predatory insect, Enallagma civile (Hagen, 1861), as a model organism, to determine whether projected warming may affect development or survival. Eggs were collected and reared under four water temperature regimes representing current (26°C) and projected future conditions (32, 38, and 41°C). Nymph body size after each molt, development rate, and deaths were recorded. Elevated water temperatures were found to significantly affect the survivorship of E. civile eggs and nymphs as well as adult body size at emergence: an increase in temperature incurred a decrease in survival and size. Nymphs in the two hotter treatments were smaller and had low survivorship whereas individuals in the cooler temperatures generally survived to adulthood and were larger. Nymphs reared at 32°C experienced accelerated ontogenetic development compared with the other temperatures, going from egg to adult in 26 d. Projected elevated temperatures may, thus, be both advantageous and detrimental, causing concern for aquatic invertebrates in this region in the future.


PLoS ONE ◽  
2017 ◽  
Vol 12 (7) ◽  
pp. e0179928 ◽  
Author(s):  
Marta Moyano ◽  
Caroline Candebat ◽  
Yannick Ruhbaum ◽  
Santiago Álvarez-Fernández ◽  
Guy Claireaux ◽  
...  

2008 ◽  
Vol 87 (3) ◽  
pp. 201-206 ◽  
Author(s):  
A. Stuijs ◽  
H. Brinkhuis

The Paleocene-Eocene Thermal Maximum (PETM), ~55.5 Myr ago, was a geologically brief (~170 kyr) episode of globally elevated temperatures, which occurred superimposed on the long-term late Paleocene and early Eocene warming trend (Fig. 1). It was marked by a 5 – 8° C warming in both low and high-latitude regions, a perturbation of the hydrological cycle and major biotic response on land and in the oceans, including radiations, extinctions and migrations (see overviews in Bowen et al., 2006; Sluijs et al., 2007a).


Sign in / Sign up

Export Citation Format

Share Document