Establishment of tissue-specific tolerance is driven by regulatory T cells selected by thymic epithelium

1996 ◽  
Vol 26 (8) ◽  
pp. 1807-1815 ◽  
Author(s):  
Yves Modigliani ◽  
Antonio Coutinho ◽  
Pablo Pereira ◽  
Nicole Le Douarin ◽  
Véronique Thomas-Vaslin ◽  
...  
1993 ◽  
Vol 177 (4) ◽  
pp. 1153-1164 ◽  
Author(s):  
A Bonomo ◽  
P Matzinger

Most current models of T cell development include a positive selection step in the thymus that occurs when T cells interact with thymic epithelium and a negative selection step after encounters with bone marrow-derived cells. We show here that developing T cells are tolerized when they recognize antigens expressed by thymic epithelium, that the tolerance is tissue specific, and that it can occur by deletion of the reactive T cells.


2020 ◽  
Vol 6 (11) ◽  
pp. eaax8429 ◽  
Author(s):  
James D. Fisher ◽  
Wensheng Zhang ◽  
Stephen C. Balmert ◽  
Ali M. Aral ◽  
Abhinav P. Acharya ◽  
...  

Vascularized composite allotransplantation (VCA) encompasses face and limb transplantation, but as with organ transplantation, it requires lifelong regimens of immunosuppressive drugs to prevent rejection. To achieve donor-specific immune tolerance and reduce the need for systemic immunosuppression, we developed a synthetic drug delivery system that mimics a strategy our bodies naturally use to recruit regulatory T cells (Treg) to suppress inflammation. Specifically, a microparticle-based system engineered to release the Treg-recruiting chemokine CCL22 was used in a rodent hindlimb VCA model. These “Recruitment-MP” prolonged hindlimb allograft survival indefinitely (>200 days) and promoted donor-specific tolerance. Recruitment-MP treatment enriched Treg populations in allograft skin and draining lymph nodes and enhanced Treg function without affecting the proliferative capacity of conventional T cells. With implications for clinical translation, synthetic human CCL22 induced preferential migration of human Treg in vitro. Collectively, these results suggest that Recruitment-MP promote donor-specific immune tolerance via local enrichment of suppressive Treg.


Blood ◽  
2002 ◽  
Vol 100 (9) ◽  
pp. 3408-3414 ◽  
Author(s):  
Kevin J. Young ◽  
Liming Yang ◽  
M. James Phillips ◽  
Li Zhang

Abstract Donor-lymphocyte infusion (DLI) before transplantation can lead to specific tolerance to allografts in mice, nonhuman primates, and humans. We and others have demonstrated a role for regulatory T cells in DLI-induced, donor-specific transplantation tolerance, but it is not known how regulatory T cells are activated and where they execute their function. In this study, we observed, in both transgenic and normal mice, that DLI before transplantation is required for activation of αβ-T-cell-receptor–positive, CD3+CD4−CD8− double-negative (DN) regulatory T cells in the periphery of recipient mice. More interestingly, DLI induced DN regulatory T cells to migrate preferentially to donor-specific allogeneic skin grafts and to form a majority of graft-infiltrating T cells in accepted skin allografts. Furthermore, both recipient-derived peripheral and graft-infiltrating DN T cells were able to suppress and kill antidonor CD8+ T cells in an antigen-specific manner. These data indicate that DLI may induce donor-specific transplantation tolerance by activating recipient DN regulatory T cells in the periphery and by promoting migration of regulatory T cells to donor-specific allogeneic skin grafts. Our results also show that DN regulatory T cells can eliminate antidonor T cells both systemically and locally, a finding suggesting that graft-infiltrating T cells can be beneficial to graft survival.


Immunity ◽  
2017 ◽  
Vol 46 (4) ◽  
pp. 660-674 ◽  
Author(s):  
Joanne E. Konkel ◽  
Dunfang Zhang ◽  
Peter Zanvit ◽  
Cheryl Chia ◽  
Tamsin Zangarle-Murray ◽  
...  

Author(s):  
Jorge Nihei ◽  
Fabiola Cardillo ◽  
Jose Mengel

Trypanosoma cruzi infection causes Chagas’ disease in humans. The infection activates the innate and adaptative immunity in an orchestrated immune response to control parasite growth, guaranteeing host survival. Despite an effective immune response to the parasite in the acute phase, the infection progresses to a chronic stage. The parasite infects different tissues such as peripheral neurons, the brain, skeletal muscle, and heart muscle, among many others. It is evident now that tissue-specific immune responses may develop along with anti-parasite immunity. Therefore, mechanisms to regulate immunity and to ensure tissue-specific tolerance are operating during the infection. Studying those immunoregulatory mechanisms is fundamental to improve host protection or control inflammatory reactions that may lead to pathology. The role of IL-2 during T. cruzi infection is not established. IL-2 production by T cells is strongly down-modulated early in the disease by unknown mechanisms and remains low during the chronic phase of the disease. IL-2 activates NK cells, CD4, and CD8 T cells and may be necessary to immunity development. Also, the expansion and maintenance of regulatory T cells require IL-2. Thus, IL-2 may be a key cytokine involved in promoting or down-regulating immune responses, probably in a dose-dependent manner. This study blocked IL-2 during the acute T. cruzi infection by using a neutralizing monoclonal antibody. The results show that parasitemia and mortality rate was lower in animals treated with anti-IL-2. The percentages and total numbers of CD4+CD25+Foxp3+ T cells diminished within three weeks of infection. The numbers of splenic activated/memory CD4 and CD8 splenic T cells increased during the acute infection. T cells producing IFN-γ, TNF-α and IL-10 also augmented in anti-IL-2-treated infected mice. The IL-2 blockade also increased the numbers of inflammatory cells in the heart and skeletal muscles and the amount of IL-17 produced by heart T cells. These results suggest that IL-2 might be involved in the immune regulatory response during the acute T. cruzi infection, dampening T cell activation through the expansion/maintenance of regulatory T cells and regulating IL-17 production. Therefore, the IL-2 pathway is an attractive target for therapeutic purposes in acute and chronic phases of Chagas’ disease.


2009 ◽  
Vol 183 (3) ◽  
pp. 1636-1643 ◽  
Author(s):  
Lara Myers ◽  
Ronald J. Messer ◽  
Aaron B. Carmody ◽  
Kim J. Hasenkrug

2012 ◽  
Vol 40 (12) ◽  
pp. 974-982.e1 ◽  
Author(s):  
Brian G. Engelhardt ◽  
Salyka M. Sengsayadeth ◽  
Madan Jagasia ◽  
Bipin N. Savani ◽  
Adetola A. Kassim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document