scholarly journals β-Diketones as Scaffolds for Anticancer Drug Design - From Organic Building Blocks to Natural Products and Metallodrug Components

2017 ◽  
Vol 2017 (12) ◽  
pp. 1655-1666 ◽  
Author(s):  
Jakob Kljun ◽  
Iztok Turel
2012 ◽  
Vol 19 (26) ◽  
pp. 4377-4398 ◽  
Author(s):  
I. Balderas-Renteria ◽  
P. Gonzalez-Barranco ◽  
A. Garcia ◽  
B. K. Banik ◽  
G. Rivera

Author(s):  
Ayesha Jalil ◽  
Yaxin O Yang ◽  
Zhendong Chen ◽  
Rongxuan Jia ◽  
Tianhao Bi ◽  
...  

: Hypervalent iodine reagents are a class of non-metallic oxidants have been widely used in the construction of several sorts of bond formations. This surging interest in hypervalent iodine reagents is essentially due to their very useful oxidizing properties, combined with their benign environmental character and commercial availability from the past few decades ago. Furthermore, these hypervalent iodine reagents have been used in the construction of many significant building blocks and privileged scaffolds of bioactive natural products. The purpose of writing this review article is to explore all the transformations in which carbon-oxygen bond formation occurred by using hypervalent iodine reagents under metal-free conditions


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 720
Author(s):  
Satomi Niwayama

Symmetric organic compounds are generally obtained inexpensively, and therefore they can be attractive building blocks for the total synthesis of various pharmaceuticals and natural products. The drawback is that discriminating the identical functional groups in the symmetric compounds is difficult. Water is the most environmentally benign and inexpensive solvent. However, successful organic reactions in water are rather limited due to the hydrophobicity of organic compounds in general. Therefore, desymmetrization reactions in aqueous media are expected to offer versatile strategies for the synthesis of a variety of significant organic compounds. This review focuses on the recent progress of desymmetrization reactions of symmetric organic compounds in aqueous media without utilizing enzymes.


Marine Drugs ◽  
2022 ◽  
Vol 20 (1) ◽  
pp. 53
Author(s):  
Laura Llorach-Pares ◽  
Alfons Nonell-Canals ◽  
Conxita Avila ◽  
Melchor Sanchez-Martinez

Computer-aided drug design (CADD) techniques allow the identification of compounds capable of modulating protein functions in pathogenesis-related pathways, which is a promising line on drug discovery. Marine natural products (MNPs) are considered a rich source of bioactive compounds, as the oceans are home to much of the planet’s biodiversity. Biodiversity is directly related to chemodiversity, which can inspire new drug discoveries. Therefore, natural products (NPs) in general, and MNPs in particular, have been used for decades as a source of inspiration for the design of new drugs. However, NPs present both opportunities and challenges. These difficulties can be technical, such as the need to dive or trawl to collect the organisms possessing the compounds, or biological, due to their particular marine habitats and the fact that they can be uncultivable in the laboratory. For all these difficulties, the contributions of CADD can play a very relevant role in simplifying their study, since, for example, no biological sample is needed to carry out an in-silico analysis. Therefore, the amount of natural product that needs to be used in the entire preclinical and clinical study is significantly reduced. Here, we exemplify how this combination between CADD and MNPs can help unlock their therapeutic potential. In this study, using a set of marine invertebrate molecules, we elucidate their possible molecular targets and associated therapeutic potential, establishing a pipeline that can be replicated in future studies.


Sign in / Sign up

Export Citation Format

Share Document