Surface Changes at Platinized Platinum Based Hydrogen Gas Electrodes Following Use in Highly Saline Aqueous Solutions

2014 ◽  
Vol 26 (9) ◽  
pp. 1952-1957 ◽  
Author(s):  
M. F. Camões ◽  
B. Anes ◽  
C. S. Oliveira ◽  
M. E. Melo Jorge
2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Michael J. Stubblebine ◽  
Ivan Catton

Aluminum heat pipes have traditionally been incompatible with water and water-based fluids because they quickly react to generate noncondensable hydrogen gas (NCG). Two different inorganic aqueous solutions (IAS) are tested in a flat heat pipe (FHP). Grooved aluminum plates were used as the heat pipe wick and the tests were run with the heating section raised above the condenser. Compatibility between the working fluid and the aluminum heat pipe was established by running the device to dryout and observing thermal resistance results along the way. De-ionized (DI) water was also tested, as a baseline for comparison, to establish that it did indeed fail as expected. Operating performance of each mixture was obtained from zero heat input until dryout was reached for two angles of inclination. The data suggest that both IAS mixtures are compatible with aluminum heat pipes and exhibit performance similar to that of a copper and water heat pipe. It is demonstrated that IAS and aluminum heat pipes show potential for replacing existing copper and water devices for some applications and provide alternative options for heat pipe designers who value both the thermophysical property advantages of water and reduced weight of aluminum devices.


Globus ◽  
2021 ◽  
Vol 7 (6(63)) ◽  
pp. 10-16
Author(s):  
Galina Nikolaevna Sidorenko ◽  
Boris Innokentievich Laptev ◽  
Nikolai Petrovich Gorlenko

The paper evaluates changes in the structure of water and aqueous solutions of sodium chloride in the wall layer on the basis of dielectrometry and correlation analysis. It is shown that when the distance to the solid surface decreases, there is a multi-fold nonlinear decrease in the electrical capacitance and a nonlinear change in the Sr parameter, which characterizes the magnitude of the change in the electrical capacitance of the conduction fluid when the distance to the solid surface changes. The parameters used in the work (electric capacity of liquids and Sr ) can be used to evaluate the changes in the structural organization of aqueous solutions in the wall (boundary) layer and to interpret the processes occurring in the liquid layer at the interface of the solid – aqueous solution phases.


Author(s):  
Michael Stubblebine ◽  
Ladan Amouzegar ◽  
Ivan Catton

Aluminum heat pipes have traditionally been incompatible with water and water-based fluids because they quickly react with the casing to generate non-condensable hydrogen gas (NCG). The NCGs inhibit the operation of evaporation and condensation based devices, eventually plugging the condenser end of the heat pipe. The heat pipe is then unable to remove heat from the condenser and the device fails. Terdtoon [1] found that these events often happen so rapidly between aluminum and water that measurements cannot even be taken. The present work tested two different, patented inorganic aqueous solutions (IAS) in a flat heat pipe setup. Grooved aluminum plates were used as the heat pipe wick and the tests were run with the heating section raised above the condenser. Compatibility between the working fluid and aluminum heat pipe was established by running the device to dryout and then reducing the heat flux to check for hysteresis. De-ionized water (DI water) was also tested, as a baseline, to establish that it did indeed fail as expected. Operating performance of each mixture was obtained from zero heat input until dryout was reached for multiple angles of inclination. The data show that both IAS mixtures are compatible with aluminum heat pipes and exhibit performance similar to that of a copper and water heat pipe. IAS and aluminum heat pipes could replace existing copper and water devices and deliver similar performance while reducing overall weight by more than three times. An IAS and aluminum heat pipe could also replace existing aluminum and ammonia combinations, currently favored in aerospace applications, to allow for increased performance and a larger operating temperature range while maintaining low device weight.


Author(s):  
Katsuhiko MATSUDA ◽  
Nobuhiro TANAKA ◽  
Hiroshi MAJIMA

1967 ◽  
Vol 31 ◽  
pp. 265-278 ◽  
Author(s):  
A. Blaauw ◽  
I. Fejes ◽  
C. R. Tolbert ◽  
A. N. M. Hulsbosch ◽  
E. Raimond

Earlier investigations have shown that there is a preponderance of negative velocities in the hydrogen gas at high latitudes, and that in certain areas very little low-velocity gas occurs. In the region 100° <l< 250°, + 40° <b< + 85°, there appears to be a disturbance, with velocities between - 30 and - 80 km/sec. This ‘streaming’ involves about 3000 (r/100)2solar masses (rin pc). In the same region there is a low surface density at low velocities (|V| < 30 km/sec). About 40% of the gas in the disturbance is in the form of separate concentrations superimposed on a relatively smooth background. The number of these concentrations as a function of velocity remains constant from - 30 to - 60 km/sec but drops rapidly at higher negative velocities. The velocity dispersion in the concentrations varies little about 6·2 km/sec. Concentrations at positive velocities are much less abundant.


Author(s):  
K. J. Böhm ◽  
a. E. Unger

During the last years it was shown that also by means of cryo-ultra-microtomy a good preservation of substructural details of biological material was possible. However the specimen generally was prefixed in these cases with aldehydes.Preparing ultrathin frozen sections of chemically non-prefixed material commonly was linked up to considerable technical and manual expense and the results were not always satisfying. Furthermore, it seems to be impossible to carry out cytochemical investigations by means of treating sections of unfixed biological material with aqueous solutions.We therefore tried to overcome these difficulties by preparing yeast cells (S. cerevisiae) in the following manner:


Author(s):  
R.F. Sognnaes

Sufficient experience has been gained during the past five years to suggest an extended application of microreplication and scanning electron microscopy to problems of forensic science. The author's research was originally initiated with a view to develop a non-destructive method for identification of materials that went into objects of art, notably ivory and ivories. This was followed by a very specific application to the identification and duplication of the kinds of materials from animal teeth and tusks which two centuries ago went into the fabrication of the ivory dentures of George Washington. Subsequently it became apparent that a similar method of microreplication and SEM examination offered promise for a whole series of problems pertinent to art, technology and science. Furthermore, what began primarily as an application to solid substances has turned out to be similarly applicable to soft tissue surfaces such as mucous membranes and skin, even in cases of acute, chronic and precancerous epithelial surface changes, and to post-mortem identification of specific structures pertinent to forensic science.


Sign in / Sign up

Export Citation Format

Share Document