scholarly journals Dissolution of Hydrogen Gas in Aqueous Solutions

Author(s):  
Katsuhiko MATSUDA ◽  
Nobuhiro TANAKA ◽  
Hiroshi MAJIMA
2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Michael J. Stubblebine ◽  
Ivan Catton

Aluminum heat pipes have traditionally been incompatible with water and water-based fluids because they quickly react to generate noncondensable hydrogen gas (NCG). Two different inorganic aqueous solutions (IAS) are tested in a flat heat pipe (FHP). Grooved aluminum plates were used as the heat pipe wick and the tests were run with the heating section raised above the condenser. Compatibility between the working fluid and the aluminum heat pipe was established by running the device to dryout and observing thermal resistance results along the way. De-ionized (DI) water was also tested, as a baseline for comparison, to establish that it did indeed fail as expected. Operating performance of each mixture was obtained from zero heat input until dryout was reached for two angles of inclination. The data suggest that both IAS mixtures are compatible with aluminum heat pipes and exhibit performance similar to that of a copper and water heat pipe. It is demonstrated that IAS and aluminum heat pipes show potential for replacing existing copper and water devices for some applications and provide alternative options for heat pipe designers who value both the thermophysical property advantages of water and reduced weight of aluminum devices.


2014 ◽  
Vol 26 (9) ◽  
pp. 1952-1957 ◽  
Author(s):  
M. F. Camões ◽  
B. Anes ◽  
C. S. Oliveira ◽  
M. E. Melo Jorge

Author(s):  
Michael Stubblebine ◽  
Ladan Amouzegar ◽  
Ivan Catton

Aluminum heat pipes have traditionally been incompatible with water and water-based fluids because they quickly react with the casing to generate non-condensable hydrogen gas (NCG). The NCGs inhibit the operation of evaporation and condensation based devices, eventually plugging the condenser end of the heat pipe. The heat pipe is then unable to remove heat from the condenser and the device fails. Terdtoon [1] found that these events often happen so rapidly between aluminum and water that measurements cannot even be taken. The present work tested two different, patented inorganic aqueous solutions (IAS) in a flat heat pipe setup. Grooved aluminum plates were used as the heat pipe wick and the tests were run with the heating section raised above the condenser. Compatibility between the working fluid and aluminum heat pipe was established by running the device to dryout and then reducing the heat flux to check for hysteresis. De-ionized water (DI water) was also tested, as a baseline, to establish that it did indeed fail as expected. Operating performance of each mixture was obtained from zero heat input until dryout was reached for multiple angles of inclination. The data show that both IAS mixtures are compatible with aluminum heat pipes and exhibit performance similar to that of a copper and water heat pipe. IAS and aluminum heat pipes could replace existing copper and water devices and deliver similar performance while reducing overall weight by more than three times. An IAS and aluminum heat pipe could also replace existing aluminum and ammonia combinations, currently favored in aerospace applications, to allow for increased performance and a larger operating temperature range while maintaining low device weight.


1967 ◽  
Vol 31 ◽  
pp. 265-278 ◽  
Author(s):  
A. Blaauw ◽  
I. Fejes ◽  
C. R. Tolbert ◽  
A. N. M. Hulsbosch ◽  
E. Raimond

Earlier investigations have shown that there is a preponderance of negative velocities in the hydrogen gas at high latitudes, and that in certain areas very little low-velocity gas occurs. In the region 100° <l< 250°, + 40° <b< + 85°, there appears to be a disturbance, with velocities between - 30 and - 80 km/sec. This ‘streaming’ involves about 3000 (r/100)2solar masses (rin pc). In the same region there is a low surface density at low velocities (|V| < 30 km/sec). About 40% of the gas in the disturbance is in the form of separate concentrations superimposed on a relatively smooth background. The number of these concentrations as a function of velocity remains constant from - 30 to - 60 km/sec but drops rapidly at higher negative velocities. The velocity dispersion in the concentrations varies little about 6·2 km/sec. Concentrations at positive velocities are much less abundant.


Author(s):  
K. J. Böhm ◽  
a. E. Unger

During the last years it was shown that also by means of cryo-ultra-microtomy a good preservation of substructural details of biological material was possible. However the specimen generally was prefixed in these cases with aldehydes.Preparing ultrathin frozen sections of chemically non-prefixed material commonly was linked up to considerable technical and manual expense and the results were not always satisfying. Furthermore, it seems to be impossible to carry out cytochemical investigations by means of treating sections of unfixed biological material with aqueous solutions.We therefore tried to overcome these difficulties by preparing yeast cells (S. cerevisiae) in the following manner:


Author(s):  
S.A.C. Gould ◽  
B. Drake ◽  
C.B. Prater ◽  
A.L. Weisenhorn ◽  
S.M. Lindsay ◽  
...  

The atomic force microscope (AFM) is an instrument that can be used to image many samples of interest in biology and medicine. Images of polymerized amino acids, polyalanine and polyphenylalanine demonstrate the potential of the AFM for revealing the structure of molecules. Images of the protein fibrinogen which agree with TEM images demonstrate that the AFM can provide topographical data on larger molecules. Finally, images of DNA suggest the AFM may soon provide an easier and faster technique for DNA sequencing.The AFM consists of a microfabricated SiO2 triangular shaped cantilever with a diamond tip affixed at the elbow to act as a probe. The sample is mounted on a electronically driven piezoelectric crystal. It is then placed in contact with the tip and scanned. The topography of the surface causes minute deflections in the 100 μm long cantilever which are detected using an optical lever.


Sign in / Sign up

Export Citation Format

Share Document