Equilibrium and kinetic studies of the adsorption of basic dye from aqueous solutions by zeolite synthesized from bagasse fly ash

2010 ◽  
Vol 30 (4) ◽  
pp. 549-557 ◽  
Author(s):  
Bhavna A. Shah ◽  
Harendra D. Patel ◽  
Ajay V. Shah
2000 ◽  
Vol 35 (13) ◽  
pp. 2097-2113 ◽  
Author(s):  
VINOD K. GUPTA ◽  
DINESH MOHAN ◽  
SAURABH SHARMA ◽  
MONICA SHARMA

2011 ◽  
Vol 08 (16) ◽  
pp. 17-24
Author(s):  
Patricia CUNICO ◽  
Denise Alves FUNGARO ◽  
Carina Pitwak MAGDALENA

Zeolite synthesized from coal fly ash (ZC) and coal fly ashes (CC) were used as adsorbents to remove Reactive Black 5 (RP5) dye from aqueous solutions. The equilibrium time was reached after 420 min. The kinetics studies indicated that the adsorption followed the pseudo-second order kinetic and that surface adsorption and intraparticle diffusion were involved in the adsorption mechanism. The isotherm adsorption data fit accordingly to the Langmuir model for both adsorbents. The maximum adsorption capacities were 0.685 mg g-1 for RP5/ZC system and 0.577 mg g-1 for RP5/CC system. The efficiencies of adsorption were found to be between 47.7-88.1% for ZC and 65.4-99.6% for CC. The results indicate that zeolitic material is suitable as adsorbent for adsorption of reactive azodye from aqueous solutions.


2014 ◽  
Vol 16 (1) ◽  
pp. 21-27 ◽  
Author(s):  
Justyna Ulatowska ◽  
Izabela Polowczyk ◽  
Wojciech Sawiński ◽  
Anna Bastrzyk ◽  
Tomasz Koźlecki ◽  
...  

Abstract The objective of the present study is to assess the efficiency of fly ash and fly ash agglomerates to remove arsenic(III) from aqueous solution. The maximum static uptakes were achieved to be 13.5 and 5.7 mgAs(III)/adsorbent for nonagglomerated material and agglomerated one, respectively. Isotherm studies showed good fit with the Langmuir (fly ash) and the Freundlich (fly ash agglomerates) isotherm models. Kinetic studies indicated that the sorption of arsenic on fly ash and its agglomerates follows the pseudo-second-order (PSO) chemisorption model (R2 = 0.999). Thermodynamic parameters revealed an endothermic nature of As(III) adsorption on such adsorbents. The adsorption results confirmed that fly ash and its agglomerates can be used for As(III) removal from aqueous solutions. Fly ash can adsorb more arsenic(III) than agglomerates, which are easier to use, because this material is less dusty and easier to separate from solution.


2020 ◽  
Vol 10 (12) ◽  
Author(s):  
Olutayo A. Oluyinka ◽  
Alpesh V. Patel ◽  
Bhavna A. Shah ◽  
Maryam I. Bagia

Abstractp-Nitroaniline (PNAN) and nitrobenzene (NB) being important raw materials and intermediates for the production of a wide range of chemical products have the potential of constituting water pollutants. Hence, the development of the means of removing these chemicals from water would go a long way to safeguard the health of the environment. The goal of this research was to transform bagasse fly ash (BFA), solid waste from the sugar industry into porous zeolitic adsorbents MgFZBFA and MgMZBFA and examine them for their adsorptive removal of PNAN and NB from aqueous solutions. The syntheses of the sorbents involve alkali fusion technique and microwave hydrothermal treatment for the desired properties. Advanced characterization techniques such as FTIR (Fourier transform infrared spectroscopy), XRF (X-ray fluorescence spectroscopy), XRD (X-ray diffraction spectroscopy), SEM (scanning electron microscopy), Brunauer–Emmett–Teller (BET)/Barrett–Joyner–Halenda (BJH) Method, and TGA (thermogravimetric analysis) were used for the characterization and evaluation of the sorbents’ properties. The adsorptive removal of PNAN and NB from aqueous solutions by MgFZBFA and MgMZBFA were investigated. Various parameters such as pH, adsorbent dosage, initial sorbate concentration were optimized during the adsorption experiment to achieve best performance. Adsorption isotherm, kinetics and dynamics were studied. It was found that Langmuir adsorption isotherm model better represents the adsorption processes and that the processes follow pseudo-second-order kinetics. More so, the sorption processes were most possibly completed by both surface sorption (liquid-film diffusion) and intra-particle diffusion. The maximum sorption capacities observed with MgFZBFA for PNAN and NB are 30.86 mg g−1 and 19.92 mg g−1, while with MgMZBFA the values are 12.72 mg g−1 and 10.20 mg g−1, respectively. The performances of MgFZBFA and MgMZBFA for the sorption of PNAN and NB were compared with some adsorbents previously studied for the same purpose, and results show that the adsorbents in the present study exhibit better performances. The application as materials of cheap source for the removal of PNAN and NB from contaminated water could be considered.


Sign in / Sign up

Export Citation Format

Share Document