scholarly journals Experimental study of deformable connection consisting of buckling-restrained brace and rubber bearings to connect floor system to lateral force resisting system

2016 ◽  
Vol 46 (8) ◽  
pp. 1287-1305 ◽  
Author(s):  
Georgios Tsampras ◽  
Richard Sause ◽  
Robert B. Fleischman ◽  
Jose I. Restrepo
1989 ◽  
Vol 55 (512) ◽  
pp. 847-852
Author(s):  
Akihiro KASHIWAZAKI ◽  
Motoaki TANAKA ◽  
Naoki TOKUDA ◽  
Takao ENOMOTO
Keyword(s):  

2012 ◽  
Vol 12 (11) ◽  
pp. 3441-3454 ◽  
Author(s):  
N. Ahmad ◽  
Q. Ali ◽  
M. Ashraf ◽  
B. Alam ◽  
A. Naeem

Abstract. Half-Dressed rubble stone (DS) masonry structures as found in the Himalayan region are investigated using experimental and analytical studies. The experimental study included a shake table test on a one-third scaled structural model, a representative of DS masonry structure employed for public critical facilities, e.g. school buildings, offices, health care units, etc. The aim of the experimental study was to understand the damage mechanism of the model, develop damage scale towards deformation-based assessment and retrieve the lateral force-deformation response of the model besides its elastic dynamic properties, i.e. fundamental vibration period and elastic damping. The analytical study included fragility analysis of building prototypes using a fully probabilistic nonlinear dynamic method. The prototypes are designed as SDOF systems assigned with lateral, force-deformation constitutive law (obtained experimentally). Uncertainties in the constitutive law, i.e. lateral stiffness, strength and deformation limits, are considered through random Monte Carlo simulation. Fifty prototype buildings are analyzed using a suite of ten natural accelerograms and an incremental dynamic analysis technique. Fragility and vulnerability functions are derived for the damageability assessment of structures, economic loss and casualty estimation during an earthquake given the ground shaking intensity, essential within the context of risk assessment of existing stock aiming towards risk mitigation and disaster risk reduction.


Author(s):  
C. S. Tsai ◽  
Yi Liu ◽  
B. Q. Liu

The buckling restrained brace (BRB) has been worldwide recognized as an energy absorber to protect structures from earthquake damage. However, the traditional BRB is a fully close design, it is therefore impossible to detect the condition of the steel core during manufacturing and after earthquakes. This paper proposed a buckling restrained brace with inspection windows that allow inspecting the condition of the internal components of the BRB. Experimental study in selecting the sizes and locations of the inspection windows without affecting the functionality of the BRB has been carried out to search for an economically feasible BRB that is convenient for manufacturing and installation and meets testing protocols. Test results of the proposed BRBs under cyclic loadings showed that the mechanical behavior of the BRB with inspection windows on the buckling-restraining unit consisting of the constraining and lateral support elements was stable and that damage always occurred at the energy dissipation segments after low cycle fatigue tests. These test results indicate that the inspection windows opened on the proposed BRB have little influence on the strength of the device and that the proposed device can be considered as a stable energy dissipation device.


Sign in / Sign up

Export Citation Format

Share Document