Evaluation of out-of-plane seismic performance of column-to-column precast concrete cladding panels in one-storey industrial buildings

2017 ◽  
Vol 47 (2) ◽  
pp. 397-417 ◽  
Author(s):  
Andrea Belleri ◽  
Fabrizio Cornali ◽  
Chiara Passoni ◽  
Alessandra Marini ◽  
Paolo Riva
2022 ◽  
pp. 136943322110572
Author(s):  
Xun Chong ◽  
Pu Huo ◽  
Linlin Xie ◽  
Qing Jiang ◽  
Linbing Hou ◽  
...  

A new connection measure between the precast concrete (PC) cladding panel and PC frame structure is proposed to realize a new kind of isostatic frame-cladding system. Three full-scale PC wall-frame substructures were tested under the quasi-static load. These substructures included a bare wall-frame specimen, a specimen with a cladding panel that has no opening, and a specimen with a cladding panel that has an opening in it. The damage evolution, failure mode, load-bearing capacity, deformation capacity, and energy dissipation capacity of three specimens were compared. The results indicated that the motions of the cladding panels and the main structures were uncoupled through the relative clearance of the bottom connections, and three specimens exhibited approximately identical failure modes and seismic performance. Thus, the reliability of this new isostatic system was validated.


2018 ◽  
Vol 6 (3) ◽  
pp. 1-6
Author(s):  
Bruno Dal Lago ◽  
Francesco Foti ◽  
Luca Martinelli

The strong earthquakes occurred in Southern Europe in the last decade pointed out a poor seismic performance of the connection system of the cladding of precast industrial structures. The cladding of these buildings usually consists of sandwich concrete panels of remarkable mass, connected to the frame structure with mechanical devices. The estimation of the out-of-plane seismic action on these connections is a key step for their correct proportioning. However, the formulation currently provided in the Eurocode 8 for the estimation of the seismic action on non-structural elements was calibrated with different objectives. Furthermore, given there is no in-plane structure-panel interaction, a quote of the panel mass is lumped in correspondence of their connection for a correct proportioning of the frame structure. The designers need to make assumptions on both aspects that often bring to remarkably different solutions. The paper presents a consistent dynamic formulation of the problem of the vibration of rigid bodies connected with cantilever columns. The solution brings to closed-form equations to evaluate the exact out-of-plane action on the connections and the correct amount of panel mass to be lumped.


2016 ◽  
Vol 847 ◽  
pp. 257-265
Author(s):  
Massimo Latour ◽  
Marilena Paolillo ◽  
Gianvittorio Rizzano ◽  
Mariacristina Vergato

In this work, the possibility to improve the seismic behaviour of precast concrete buildings is examined by proposing the adoption of a dual system composed by the internal pendular columns of the building and the external cladding walls. To this scope, it is suggested to substitute the joints classically adopted at the top of the panels with a connection able to work as a slider with vertical axis and to insert at the bottom of the walls two or more hysteretic dampers working on the uplift of the cladding panels occurring under seismic actions. With this approach, with respect to the classical design philosophy, due to the participation of the cladding panels, the structure is stiffened, obtaining a reduction of the lateral drifts under serviceability limit states, and its seismic behavior is improved due to the additional source of energy dissipation represented by the dampers located at the base of the walls. The effectiveness of the suggested approach is verified on a case study designed following the proposed approach.


2021 ◽  
Vol 7 ◽  
Author(s):  
Michele Egidio Bressanelli ◽  
Marco Bosio ◽  
Andrea Belleri ◽  
Paolo Riva ◽  
Piergiovanni Biagiotti

The 2012 Emilia earthquakes caused significant damage to existing precast reinforced concrete (RC) industrial buildings not specifically designed to resist seismic actions. The main failure mechanisms were related to the loss of support of beams and roof elements caused by high relative displacements, to the failure of the mechanical connections and consequent fall of cladding panels, to the damage at the base of the columns and to the collapse of RC forks at the top of the columns. In all cases, the behavior of the connections, and specifically of beam-to-column connections, demonstrated to be crucial, given that they may inhibit the exploitation of strength and ductility reserves in precast elements. This paper presents a beam-to-column connection restraint-device for precast industrial buildings. The device can be applied to existing structures to transfer horizontal seismic forces between beams and columns and to increase the energy dissipation of the system. Design criteria were defined with the aim to limit the relative maximum displacement at the beam-to-column interface and to mitigate the out-of-plane overturning of the beam. Numerical analyses were carried out to define a suitable shape of the device and to investigate its effectiveness in terms of both local and global behavior. To validate the computational results, experimental tests have been also carried out. The tests allowed to classify the device as “dissipative” according to UNI EN 15129. Finally, the design procedure has been validated considering a one-story industrial building case study designed in accordance with the Italian building code.


2016 ◽  
Vol 14 (4) ◽  
pp. 1103-1129 ◽  
Author(s):  
Andrea Belleri ◽  
Mauro Torquati ◽  
Alessandra Marini ◽  
Paolo Riva

2012 ◽  
Vol 626 ◽  
pp. 85-89 ◽  
Author(s):  
Kay Dora Abdul Ghani ◽  
Nor Hayati Hamid

The experimental work on two full-scale precast concrete beam-column corner joints with corbels was carried out and their seismic performance was examined. The first specimen was constructed without steel fiber, while second specimen was constructed by mixed up steel fiber with concrete and placed it at the corbels area. The specimen were tested under reversible lateral cyclic loading up to ±1.5% drift. The experimental results showed that for the first specimen, the cracks start to occur at +0.5% drifts with spalling of concrete and major cracks were observed at corbel while for the second specimen, the initial cracks were observed at +0.75% with no damage at corbel. In this study, it can be concluded that precast beam-column joint without steel fiber has better ductility and stiffness than precast beam-column joint with steel fiber. However, precast beam-column joint with steel fiber has better energy dissipation and fewer cracks at corbel as compared to precast beam-column joint without steel fiber.


Sign in / Sign up

Export Citation Format

Share Document