An Innovative Dual System for New Structures or for the Retrofit of Precast Concrete Industrial Buildings

2016 ◽  
Vol 847 ◽  
pp. 257-265
Author(s):  
Massimo Latour ◽  
Marilena Paolillo ◽  
Gianvittorio Rizzano ◽  
Mariacristina Vergato

In this work, the possibility to improve the seismic behaviour of precast concrete buildings is examined by proposing the adoption of a dual system composed by the internal pendular columns of the building and the external cladding walls. To this scope, it is suggested to substitute the joints classically adopted at the top of the panels with a connection able to work as a slider with vertical axis and to insert at the bottom of the walls two or more hysteretic dampers working on the uplift of the cladding panels occurring under seismic actions. With this approach, with respect to the classical design philosophy, due to the participation of the cladding panels, the structure is stiffened, obtaining a reduction of the lateral drifts under serviceability limit states, and its seismic behavior is improved due to the additional source of energy dissipation represented by the dampers located at the base of the walls. The effectiveness of the suggested approach is verified on a case study designed following the proposed approach.

2017 ◽  
Vol 47 (2) ◽  
pp. 397-417 ◽  
Author(s):  
Andrea Belleri ◽  
Fabrizio Cornali ◽  
Chiara Passoni ◽  
Alessandra Marini ◽  
Paolo Riva

2021 ◽  
Vol 7 ◽  
Author(s):  
Krunal Gajera ◽  
Bruno Dal Lago ◽  
Luca Capacci ◽  
Fabio Biondini

Following the empirical observation of widespread collapses of cladding panel connections of precast industrial buildings under recent seismic events, new design solutions have been developed in the framework of the European project SAFECLADDING, including isostatic systems effectively decoupling the seismic response of frame structure and cladding panels. The present paper is aimed at evaluating the seismic response and vulnerability of precast frame structures employing pendulum, cantilever, and rocking cladding connection systems. Within the framework of the research project RINTC–Implicit seismic risk of code-conforming structures funded by the Italian Civil Protection Department within the ReLUIS program, the seismic performance of a typical precast industrial building has been assessed with a probabilistic approach based on the results of static and multi-stripe dynamic non-linear analyses. The seismic vulnerability assessment of each structural system has been carried out with reference to life safety and damage limit states considering three sites of increasing seismic hazard in Italy. The effect of distributed panel mass modeling vs. more common lumped mass modeling has been analyzed and critically commented based on the results of demand over capacity (D/C) ratios. Moreover, biaxial seismic D/C ratios have been evaluated for realistic strong hinge connections for cladding panels.


2021 ◽  
Vol 8 (1) ◽  
pp. 89-95
Author(s):  
Micol Palmieri ◽  
Ilaria Giannetti ◽  
Andrea Micheletti

Abstract This is a conceptual work about the form-finding of a hybrid tensegrity structure. The structure was obtained from the combination of arch-supported membrane systems and diamond-type tensegrity systems. By combining these two types of structures, the resulting system features the “tensile-integrity” property of cables and membrane together with what we call “floating-bending” of the arches, a term which is intended to recall the words “floating-compression” introduced by Kenneth Snelson, the father of tensegrities. Two approaches in the form-finding calculations were followed, the Matlab implementation of a simple model comprising standard constant-stress membrane/cable elements together with the so-called stick-and-spring elements for the arches, and the analysis with the commercial software WinTess, used in conjunction with Rhino and Grasshopper. The case study of a T3 floating-bending tensile-integrity structure was explored, a structure that features a much larger enclosed volume in comparison to conventional tensegrity prisms. The structural design of an outdoor pavilion of 6 m in height was carried out considering ultimate and service limit states. This study shows that floating-bending structures are feasible, opening the way to the introduction of suitable analysis and optimization procedures for this type of structures.


2021 ◽  
Vol 16 (4) ◽  
pp. 121-137
Author(s):  
Michele Fabio Granata

The case-study of a steel bowstring bridge set in a marine environment and highly damaged by corrosion is presented. The bridge was built in 2004 and was repainted for corrosion protection in 2010. Despite the recent construction and the maintenance interventions, many structural elements like hangers are highly damaged by corrosion with decreasing performance in terms of serviceability and ultimate limit states. A deep investigation was carried out in order to assess the bridge and to establish the necessary retrofit actions to be carried out in the near future. In-situ tests reveal the reduced performance of the original steel in terms of strength and corrosion protection, together with the inefficiency of the successive maintenance interventions. The paper presents assessment of the bridge and retrofit measures, including replacement of the hangers and galvanization through thermal spray coating technology, in order to increase its service life. The results of the investigations and the intervention measures are outlined and discussed.


2021 ◽  
Vol 11 (1) ◽  
pp. 744-754
Author(s):  
Marzena Lendo-Siwicka ◽  
Grzegorz Wrzesiński ◽  
Katarzyna Pawluk

Abstract Improper recognition of the subsoil is the most common cause of problems in the implementation of construction projects and construction facilities failures. Most often, their direct cause is the mismatch of the scope of geotechnical diagnosis to the appropriate geotechnical category, or substantive errors, including incomplete or incorrect interpretation in the creation of a geological-engineering model and often overlooked hydrogeological conditions. In many cases, insufficient recognition and documentation of geotechnical and/or geological and engineering conditions leads to damage and construction failures, delays in consider construction, and the increase of the investment budget. That’s why, in order to avoid the above, particular attention should be paid to proper geotechnical and geological-engineering documentation at the design and construction stages. The selected example of the investment analyzed errors in the geological-engineering documentation, which mainly concerned the lack of recognition of locally occurring organic soils, the incorrectly determined location of the groundwater table and the degree of compaction of non-cohesive soils, and numerous errors of calculated values of soil uplift pressure. The detection of the errors presented in the paper made it possible to select the correct technology for the construction of the sanitary sewage system and to increase the thickness of the horizontal shutter made of jet grouting columns in the area of the excavation. In addition, the article discusses the principles of proper calculation of limit states and subsoil testing, which have a significant impact on the implementation of planned investments.


2022 ◽  
pp. 136943322110572
Author(s):  
Xun Chong ◽  
Pu Huo ◽  
Linlin Xie ◽  
Qing Jiang ◽  
Linbing Hou ◽  
...  

A new connection measure between the precast concrete (PC) cladding panel and PC frame structure is proposed to realize a new kind of isostatic frame-cladding system. Three full-scale PC wall-frame substructures were tested under the quasi-static load. These substructures included a bare wall-frame specimen, a specimen with a cladding panel that has no opening, and a specimen with a cladding panel that has an opening in it. The damage evolution, failure mode, load-bearing capacity, deformation capacity, and energy dissipation capacity of three specimens were compared. The results indicated that the motions of the cladding panels and the main structures were uncoupled through the relative clearance of the bottom connections, and three specimens exhibited approximately identical failure modes and seismic performance. Thus, the reliability of this new isostatic system was validated.


Author(s):  
Houda Mezouar ◽  
Abdellatif El Afia

The purpose of this paper is to develop an approach to analyse and evaluate continuity in Service Supply Chain (SSC), through a case study. This approach is based on the data-driven quality strategy "Define, Measure, Analyze, Improve, Control" (DMAIC) which is used to drive Six Sigma projects, and on the characteristics of Smart Supply Chain. It combines Business process management (BPM), Supply Chain Operations Reference (SCOR), and the Root cause analysis tree diagram. The chosen case study is the electricity SCC, especially the business process 'management of electricity for residential buildings' of the Moroccan electricity SSC. The paper shows that the suggested approach identifies the discontinuity causes for the studied SSC, improves the business process behavior and manages its control by providing a dashboard that encompasses KPIs for periodically controlling of the SSC "to-be" state.


Author(s):  
Yevhen Dmytrenko

Traditional methods of calculation of beam constructions of floors and coverings of industrial buildings assume their consideration when calculating separately from the frame structures, in particular, reinforced concrete slabs, without taking into account their joint work, which leads to a significant margin of safety. Today in Ukraine there is a significant number of industrial buildings and structures that need strengthening and reconstruction. In this regard, of particular importance are studies of the actual load-bearing capacity of the frames of single-storey and multi-storey industrial buildings, and both in the reconstruction and in new construction, the results of which will significantly reduce costs and more rationally design structures. At the same time, one of the most relevant areas is the study of the joint work of metal load-bearing structures with prefabricated reinforced concrete structures of rigid disks of coatings and floors in their calculation.           Moreover, in the national building codes, as well as in the educational and methodological literature, the calculation methods of taking into account the joint work of such constructions are not fully covered. The purpose of this work is to estimate the reduction of mass of the metal beam structure in its calculation in bending, taking into account the joint work with the rigid disk of the floor consist of precast concrete. As part of the study, the calculation of the floor beam according to the traditional calculation scheme - without taking into account the joint work with the floor slab, the calculation of its cross-section taking into account the joint work with floor slabs and experimental numerical study of the floor by the finite element method. Modeling of the floor fragment was performed in the software packages "SCAD Office" and "LIRA CAD 2019". Numerical research is aimed at verifying the feasibility of using the calculation methodology of DBN B.2.6-98-2009 to determine the effective width of the shelf when calculating the T-sections for prefabricated reinforced concrete slabs, which are included in the joint work with the floor beams. A comparative analysis of the obtained cross-section of the beam with the beam which was previously calculated by the traditional method of calculation  in stresses in the most dangerous cross section and the total mass of the beams. According to the results of the analysis, the correctness of the application of the above normative method for determining the effective width of the shelf of T-bending reinforced concrete elements was confirmed.


Author(s):  
Agata Maniero ◽  
Giorgia Fattori

Since the 1970s, in Europe the industrial decommissioning phenomenon has led to the generation of an obsolescent and widespread building stock, located in highly strategic areas. This paper, aiming to make abandoned industrial buildings re-enter the market, focused on the development of prefabricated housing modules, according to the nested-building renovation approach. The project started from the constraint’s typological analysis (architectural, functional and structural) of 900 reinforced concrete industrial buildings in view of the intervention replicability. Finally, to validate the design and technological choices, the analysed system was applied to a real case study in Verona: the Greggi Warehouse (1960) in the “ex-Manifattura Tabacchi” factory area.


Sign in / Sign up

Export Citation Format

Share Document