The AP-Th 1000 - An advanced concept to use MOX of thorium in a closed fuel cycle

Author(s):  
Giovanni L. de Stefani ◽  
José R. Maiorino ◽  
João M. de Losada Moreira
Keyword(s):  
Atomic Energy ◽  
2021 ◽  
Author(s):  
N. V. Gorin ◽  
N. P. Voloshin ◽  
Yu. I. Churikov ◽  
A. N. Chebeskov ◽  
V. P. Kuchinov ◽  
...  

Author(s):  
T. A. Gupalo ◽  
V. V. Lopatin ◽  
N. F. Lobanov

A huge amount of radioactive waste has been accumulated in the Russian Federation (RF) in the course of implementation of the defense and energy programs, industrial and research activity involving the use of nuclear materials. The most justified and technically feasible technology of solidified RW isolation is its disposition in low-permeable geological formations in specially constructed underground facilities. Today in Russia a Closed Fuel Cycle (CFC) has been adopted, at the CFC final stage the spent nuclear materials and radioactive waste have to be isolated from the biosphere for the whole term of their potential hazard. In Russia, in accordance with the regional approach to the decision of Radioactive Waste (RW) disposal problem, several candidate disposal sites have been assigned.


Author(s):  
Sidik Permana ◽  
Mitsutoshi Suzuki

The embodied challenges for introducing closed fuel cycle are utilizing advanced fuel reprocessing and fabrication facilities as well as nuclear nonproliferation aspect. Optimization target of advanced reactor design should be maintained properly to obtain high performance of safety, fuel breeding and reducing some long-lived and high level radioactivity of spent fuel by closed fuel cycle options. In this paper, the contribution of loading trans-uranium to the core performance, fuel production, and reduction of minor actinide in high level waste (HLW) have been investigated during reactor operation of large fast breeder reactor (FBR). Excess reactivity can be reduced by loading some minor actinide in the core which affect to the increase of fuel breeding capability, however, some small reduction values of breeding capability are obtained when minor actinides are loaded in the blanket regions. As a total composition, MA compositions are reduced by increasing operation time. Relatively smaller reduction value was obtained at end of operation by blanket regions (9%) than core regions (15%). In addition, adopting closed cycle of MA obtains better intrinsic aspect of nuclear nonproliferation based on the increase of even mass plutonium in the isotopic plutonium composition.


2015 ◽  
Author(s):  
J. D. Vienna ◽  
E. D. Collins ◽  
J. V. Crum ◽  
W. L. Ebert ◽  
S. M. Frank ◽  
...  

Author(s):  
E.P. Velikhov ◽  
◽  
A.O. Gol’tsev ◽  
V.D. Davidenko ◽  
A.V. El’shin ◽  
...  

1995 ◽  
Vol 121 (1) ◽  
pp. 17-31 ◽  
Author(s):  
R. N. Hill ◽  
D. C. Wade ◽  
J. R. Liaw ◽  
E. K. Fujita

2006 ◽  
Vol 985 ◽  
Author(s):  
James Bresee

AbstractIn the January 2006 State of the Union address, President Bush announced a new Advanced Energy Initiative, a significant part of which is the Global Nuclear Energy Initiative. Its details were described on February 6, 2006 by the U.S. Secretary of Energy. In summary, it has three parts: (1) a program to expand nuclear energy use domestically and in foreign countries to support economic growth while reducing the release of greenhouse gases such as carbon dioxide. (2) an expansion of the U.S. nuclear infrastructure that will lead to the recycling of spent fuel and a closed fuel cycle and, through transmutation, a reduction in the quantity and radiotoxicity of nuclear waste and its proliferation concerns, and (3) a partnership with other fuel cycle nations to support nuclear power in additional nations by providing small nuclear power plants and leased fuel with the provision that the resulting spent fuel would be returned by the lessee to the lessor. The final part would have the effect of stabilizing the number of fuel cycle countries with attendant non-proliferation value. Details will be given later in the paper.


Sign in / Sign up

Export Citation Format

Share Document