Dynamic analysis of once-through and closed fuel cycle economics using Monte Carlo simulation

2014 ◽  
Vol 277 ◽  
pp. 234-247 ◽  
Author(s):  
Sungyeol Choi ◽  
Hyo Jik Lee ◽  
Won Il Ko
Author(s):  
Iman Hazrati Ashtiani ◽  
Davood Younesian ◽  
Mehrnoosh Abedi ◽  
Ebrahim Esmailzadeh

Dynamic analysis of a partially-filled tanker train traveling on a curved track is studied in this paper. A partially-filled tanker is dynamically modeled when it is traveling along a real curved track. For three classes of tracks, rail irregularities are randomly generated by using Monte-Carlo simulation. An equivalent dynamic system is used to model sloshing motion of the fluid. Two derailment indexes i.e. derailment quotient and unloading ratio are obtained numerically as safety indicators. A parametric study is carried out to investigate how different parameters like the operational speed, fluid modeling, rail irregularities, and fluid density may affect the derailment potential. It is found that descending of the center of gravity and consequently reduction of the moment arms is more dominant than the oscillating forces due to sloshing motion.


2006 ◽  
Vol 4 (2) ◽  
pp. 181
Author(s):  
Marcos Roberto Gois de Oliveira ◽  
Charles Ulises de Montreuil Carmona ◽  
José Lamartine Távora Junior

The objective of this paper was to analyze the risk management of a portfolio composed by Petrobras PN, Telemar PN and Vale do Rio Doce PNA stocks. It was verified if the modeling of Value-at-Risk (VaR) through the place Monte Carlo simulation with volatility of GARCH family is supported by hypothesis of efficient market. The results have shown that the statistic evaluation in inferior to dynamics, evidencing that the dynamic analysis supplies support to the hypothesis of efficient market of the Brazilian share holding market, in opposition of some empirical evidences. Also, it was verified that the GARCH models of volatility is enough to accommodate the variations of the shareholding Brazilian market, since the model is capable to accommodate the great dynamic of the Brazilian market.


2012 ◽  
Vol 155-156 ◽  
pp. 47-50
Author(s):  
Wen Hui Mo

This paper proposes a method of calculating dynamic reliability using perturbation stochastic finite element. Dynamic analysis of perturbation stochastic finite element is introduced and the mean and variance of the stress can be obtained. Samples of stress and strength are generated by computer program. The Monte Carlo simulation is proposed to compute dynamic reliability of structure. Dynamic reliability of structure is computed by the stress-strength interference model. The proposed methods are demonstrated by a numerical example of axle.


2021 ◽  
Vol 11 (15) ◽  
pp. 6795
Author(s):  
Bruno Merk ◽  
Anna Detkina ◽  
Seddon Atkinson ◽  
Dzianis Litskevich ◽  
Gregory Cartland-Glover

Molten salt reactors have gained substantial interest in the last years due to their flexibility and their potential for simplified closed fuel cycle operations for massive net-zero energy production. However, a zero-power reactor experiment will be an essential first step into the process delivering this technology. The choice of the optimal reflector material is one of the key issues for such experiments since, on the one hand, it offers huge cost savings potential due to reduced fuel demand; on the other hand, an improper choice of the reflector material can have negative effects on the quality of the experiments. The choice of the reflector material is, for the first time, introduced through a literature review and a discussion of potential roles of the reflector. The 2D study of different potential reflector materials has delivered a first down-selection with SS304 as the representative for stainless steel, lead, copper, graphite, and beryllium oxide. A deeper look identified, in addition, iron-based material with a high Si content. The following evaluation of the power distribution has shown the strong influence of the moderating reflectors, creating a massively disturbed power distribution with a peak at the core boundary. This effect has been confirmed through a deeper analysis of the 2D multi-group flux distribution, which led to the exclusion of the BeO and the graphite reflector. The most promising materials identified were SS304, lead, and copper. The final 3D Monte Carlo study demonstrated that all three materials have the potential to reduce the required amount of fuel by up to 60% compared with NaCl, which has been used in previous studies and is now taken as the reference. An initial cost analysis has identified the SS304 reflector as the most attractive solution. The results of the 2D multi-group deterministic study and the 3D multi-group Monte Carlo study have been confirmed through a continuous energy Monte Carlo reference calculation, showing only minor differences.


Author(s):  
Ryuichi Shimizu ◽  
Ze-Jun Ding

Monte Carlo simulation has been becoming most powerful tool to describe the electron scattering in solids, leading to more comprehensive understanding of the complicated mechanism of generation of various types of signals for microbeam analysis.The present paper proposes a practical model for the Monte Carlo simulation of scattering processes of a penetrating electron and the generation of the slow secondaries in solids. The model is based on the combined use of Gryzinski’s inner-shell electron excitation function and the dielectric function for taking into account the valence electron contribution in inelastic scattering processes, while the cross-sections derived by partial wave expansion method are used for describing elastic scattering processes. An improvement of the use of this elastic scattering cross-section can be seen in the success to describe the anisotropy of angular distribution of elastically backscattered electrons from Au in low energy region, shown in Fig.l. Fig.l(a) shows the elastic cross-sections of 600 eV electron for single Au-atom, clearly indicating that the angular distribution is no more smooth as expected from Rutherford scattering formula, but has the socalled lobes appearing at the large scattering angle.


Author(s):  
D. R. Liu ◽  
S. S. Shinozaki ◽  
R. J. Baird

The epitaxially grown (GaAs)Ge thin film has been arousing much interest because it is one of metastable alloys of III-V compound semiconductors with germanium and a possible candidate in optoelectronic applications. It is important to be able to accurately determine the composition of the film, particularly whether or not the GaAs component is in stoichiometry, but x-ray energy dispersive analysis (EDS) cannot meet this need. The thickness of the film is usually about 0.5-1.5 μm. If Kα peaks are used for quantification, the accelerating voltage must be more than 10 kV in order for these peaks to be excited. Under this voltage, the generation depth of x-ray photons approaches 1 μm, as evidenced by a Monte Carlo simulation and actual x-ray intensity measurement as discussed below. If a lower voltage is used to reduce the generation depth, their L peaks have to be used. But these L peaks actually are merged as one big hump simply because the atomic numbers of these three elements are relatively small and close together, and the EDS energy resolution is limited.


Sign in / Sign up

Export Citation Format

Share Document