Boosting optical and electrical characteristics of polyvinyl alcohol/carboxymethyl cellulose nanocomposites by GNPs / MWCNTs fillers as an application in energy storage devices

Author(s):  
Mymona Mohsen Abutalib ◽  
Abdulwahab Rajeh
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Le Li ◽  
Yu Zhang ◽  
Hengyi Lu ◽  
Yufeng Wang ◽  
Jingsan Xu ◽  
...  

AbstractThe development of energy storage devices that can endure large and complex deformations is central to emerging wearable electronics. Hydrogels made from conducting polymers give rise to a promising integration of high conductivity and versatility in processing. However, the emergence of conducting polymer hydrogels with a desirable network structure cannot be readily achieved using conventional polymerization methods. Here we present a cryopolymerization strategy for preparing an intrinsically stretchable, compressible and bendable anisotropic polyvinyl alcohol/polyaniline hydrogel with a complete recovery of 100% stretching strain, 50% compressing strain and fully bending. Due to its high mechanical strength, superelastic properties and bi-continuous phase structure, the as-obtained anisotropic polyvinyl alcohol/polyaniline hydrogel can work as a stretching/compressing/bending electrode, maintaining its stable output under complex deformations for an all-solid-state supercapacitor. In particular, it achieves an extremely high energy density of 27.5 W h kg−1, which is among that of state-of-the-art stretchable supercapacitors.


2018 ◽  
Vol 18 (1) ◽  
pp. 296-300 ◽  
Author(s):  
R Dhanalakshmi ◽  
K Diwakar ◽  
P Rajkumar ◽  
R Subadevi ◽  
Wei-Ren Liu ◽  
...  

2020 ◽  
Vol 13 (10) ◽  
pp. 3527-3535 ◽  
Author(s):  
Nana Chang ◽  
Tianyu Li ◽  
Rui Li ◽  
Shengnan Wang ◽  
Yanbin Yin ◽  
...  

A frigostable aqueous hybrid electrolyte enabled by the solvation interaction of Zn2+–EG is proposed for low-temperature zinc-based energy storage devices.


2020 ◽  
Author(s):  
Yamin Zhang ◽  
Zhongpu Wang ◽  
Deping Li ◽  
Qing Sun ◽  
Kangrong Lai ◽  
...  

<p></p><p>Porous carbon has attracted extensive attentions as the electrode material for various energy storage devices considering its advantages like high theoretical capacitance/capacity, high conductivity, low cost and earth abundant inherence. However, there still exists some disadvantages limiting its further applications, such as the tedious fabrication process, limited metal-ion transport kinetics and undesired structure deformation at harsh electrochemical conditions. Herein, we report a facile strategy, with calcium gluconate firstly reported as the carbon source, to fabricate ultrathin porous carbon nanosheets. <a>The as-prepared Ca-900 electrode delivers excellent K-ion storage performance including high reversible capacity (430.7 mAh g<sup>-1</sup>), superior rate capability (154.8 mAh g<sup>-1</sup> at an ultrahigh current density of 5.0 A g<sup>-1</sup>) and ultra-stable long-term cycling stability (a high capacity retention ratio of ~81.2% after 4000 cycles at 1.0 A g<sup>-1</sup>). </a>Similarly, when being applied in Zn-ion capacitors, the Ca-900 electrode also exhibits an ultra-stable cycling performance with ~90.9% capacity retention after 4000 cycles at 1.0 A g<sup>-1</sup>, illuminating the applicable potentials. Moreover, the origin of the fast and smooth metal-ion storage is also revealed by carefully designed consecutive CV measurements. Overall, considering the facile preparation strategy, unique structure, application flexibility and in-depth mechanism investigations, this work will deepen the fundamental understandings and boost the commercialization of high-efficient energy storage devices like potassium-ion/sodium-ion batteries, zinc-ion batteries/capacitors and aluminum-ion batteries.</p><br><p></p>


Author(s):  
Dhanasekar Kesavan ◽  
Vimal Kumar Mariappan ◽  
Karthikeyan Krishnamoorthy ◽  
Sang-Jae Kim

In this study, we report a facile carbothermal method for the preparation of boron-oxy-carbide (BOC) nanostructures and explore their properties towards electrochemical energy storage devices.


Author(s):  
Manika Chaudhary ◽  
Shrestha Tyagi ◽  
Ram K. Gupta ◽  
Beer Pal Singh ◽  
Rahul Singhal

Sign in / Sign up

Export Citation Format

Share Document