Synthesis of carbon nanotubes/titanium dioxide and study of its effect on the optical, dielectric, and mechanical properties of polyvinyl alcohol/sodium alginate for energy storage devices

Author(s):  
Haifa Mohammed Alghamdi ◽  
Abdulwahab Rajeh

The need of energy storage and related devices are increasing day by day, due to the expansion of global population. To deal with such universal crisis, current energy storage devices like supercapacitors need to be improved in their performances and qualities. In this regard, quantum dots (QDs) are extensively being studied, especially due to their excellent properties. The utilization of QDs in supercapacitors is huge as electrode material as well as for fluorescent electrolytes. Various QDs based composites have been made for the same, which includes doping with various metals, non-metals and carbon nanomaterials (CNMs) like graphene, carbon nanotubes (CNTs) etc. In the present chapter the current advancement and futuristic possibilities of supercapacitors have been mentioned extensively.


2016 ◽  
Vol 31 (15) ◽  
pp. 2284-2290
Author(s):  
Feryan Ahmed ◽  
Eric Eisenbraun ◽  
Sarah Ashmeg

Abstract


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Le Li ◽  
Yu Zhang ◽  
Hengyi Lu ◽  
Yufeng Wang ◽  
Jingsan Xu ◽  
...  

AbstractThe development of energy storage devices that can endure large and complex deformations is central to emerging wearable electronics. Hydrogels made from conducting polymers give rise to a promising integration of high conductivity and versatility in processing. However, the emergence of conducting polymer hydrogels with a desirable network structure cannot be readily achieved using conventional polymerization methods. Here we present a cryopolymerization strategy for preparing an intrinsically stretchable, compressible and bendable anisotropic polyvinyl alcohol/polyaniline hydrogel with a complete recovery of 100% stretching strain, 50% compressing strain and fully bending. Due to its high mechanical strength, superelastic properties and bi-continuous phase structure, the as-obtained anisotropic polyvinyl alcohol/polyaniline hydrogel can work as a stretching/compressing/bending electrode, maintaining its stable output under complex deformations for an all-solid-state supercapacitor. In particular, it achieves an extremely high energy density of 27.5 W h kg−1, which is among that of state-of-the-art stretchable supercapacitors.


2018 ◽  
Vol 6 (47) ◽  
pp. 24050-24057 ◽  
Author(s):  
Chao Xu ◽  
Xueying Kong ◽  
Shengyang Zhou ◽  
Bing Zheng ◽  
Fengwei Huo ◽  
...  

Novel nanosheets prepared by interweaving ZIF-67-templated LDH nanocrystals with nanocellulose and CNTs are applied in flexible and foldable energy storage devices.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Ujjal Kumar Sur

Graphene, a one-atom thick planar sheet of sp2bonded carbon atoms packed in a honeycomb lattice, is considered to be the mother of all graphitic materials like fullerenes, carbon nanotubes, and graphite. Graphene has created tremendous interest to both physicists and chemists due to its various fascinating properties, both observed and predicted with possible potential applications in nanoelectronics, supercapacitors, solar cells, batteries, flexible displays, hydrogen storage, and sensors. In this paper, a brief overview on various aspects of graphene such as synthesis, functionalization, self-assembly, and some of its amazing properties along with its various applications ranging from sensors to energy storage devices had been illustrated.


2016 ◽  
Vol 8 (37) ◽  
pp. 24918-24923 ◽  
Author(s):  
Amir A. Bakhtiary Davijani ◽  
H. Clive Liu ◽  
Kishor Gupta ◽  
Satish Kumar

2020 ◽  
Author(s):  
Ruhul Amin ◽  
Petla Ramesh Kumar ◽  
Ilias Belharouak

Carbon nanotubes (CNTs) are an extraordinary discovery in the area of science and technology. Engineering them properly holds the promise of opening new avenues for future development of many other materials for diverse applications. Carbon nanotubes have open structure and enriched chirality, which enable improvements the properties and performances of other materials when CNTs are incorporated in them. Energy storage systems have been using carbon nanotubes either as an additive to improve electronic conductivity of cathode materials or as an active anode component depending upon structural and morphological specifications. Furthermore, they have also been used directly as the electrode material in supercapacitors and fuel cells. Therefore, CNTs demand a huge importance due to their underlying properties and prospective applications in the energy storage research fields. There are different kinds of carbon nanotubes which have been successfully used in batteries, supercapacitors, fuel cells and other energy storage systems. This chapter focuses on the role of CNTs in the different energy storage and conversion systems and impact of their structure and morphology on the electrochemical performances and storage mechanisms.


Sign in / Sign up

Export Citation Format

Share Document