Energy analysis of a low-temperature heat pump heating system in a single-family house

2003 ◽  
Vol 28 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Dimitra Sakellari ◽  
Per Lundqvist
2019 ◽  
Vol 111 ◽  
pp. 01003
Author(s):  
Andreas Heinz ◽  
Christian Gaber

The aim of this work is the analysis of hybrid heating systems consisting of an air source heat pump, a storage tank and a photovoltaic (PV) system for the use in renovated residential buildings. The potential for decreasing the electrical energy consumption of the heat pump from the grid by targeted operation of the speed controlled compressor with electricity from PV is determined by means of dynamic system simulations in TRNSYS for a renovated single family house under the assumption that the existing radiator heating system is not replaced, and that therefore relatively high supply temperatures are necessary. Different variants were considered with regard to the size of the PV system, the storage volume and the influence of the heat emission system.


2021 ◽  
Vol 17 ◽  
pp. 1191-1200
Author(s):  
M. Kunelbayev ◽  
R. Omarov ◽  
E. Kurt ◽  
D. Omar

In this paper, a new system is proposed to improve the thermodynamic and economic indicators of solar room heating. The heat pump is integrated with a conventional solar heating system, in which the temperature of the collected heat is reduced by 20 °C to 30 °C to increase the efficiency of solar energy collection. The low-temperature heat collected by the solar collector is increased using a heat pump to generate high-temperature heat for indoor heating in winter and low-pressure process steam for industrial use in other seasons. The results show that the efficiency of the solar collector has increased by 30.50%, its annual effective operating time has reached 2000 hours, which is about four times more than that of a conventional solar heating system. In addition, the parameters of the solar collector area, the volume of the storage tank and the power of the heat pump have been optimized. This work provides a new way to use solar energy more efficiently and economically. Energy analysis shows that with the new flat solar collectors, the average annual values were 2.5 kW, and also high, the COP system in November was 4%.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1853 ◽  
Author(s):  
Pavel Neuberger ◽  
Radomír Adamovský

The efficiency of a heat pump energy system is significantly influenced by its low-temperature heat source. This paper presents the results of operational monitoring, analysis and comparison of heat transfer fluid temperatures, outputs and extracted energies at the most widely used low temperature heat sources within 218 days of a heating period. The monitoring involved horizontal ground heat exchangers (HGHEs) of linear and Slinky type, vertical ground heat exchangers (VGHEs) with single and double U-tube exchanger as well as the ambient air. The results of the verification indicated that it was not possible to specify clearly the most advantageous low-temperature heat source that meets the requirements of the efficiency of the heat pump operation. The highest average heat transfer fluid temperatures were achieved at linear HGHE (8.13 ± 4.50 °C) and double U-tube VGHE (8.13 ± 3.12 °C). The highest average specific heat output 59.97 ± 41.80 W/m2 and specific energy extracted from the ground mass 2723.40 ± 1785.58 kJ/m2·day were recorded at single U-tube VGHE. The lowest thermal resistance value of 0.07 K·m2/W, specifying the efficiency of the heat transfer process between the ground mass and the heat transfer fluid, was monitored at linear HGHE. The use of ambient air as a low-temperature heat pump source was considered to be the least advantageous in terms of its temperature parameters.


2014 ◽  
Vol 18 (5) ◽  
pp. 1667-1672 ◽  
Author(s):  
Hai-Jun Li ◽  
Guang-Hui Zhou ◽  
An-Gui Li ◽  
Xu-Ge Li ◽  
Ya-Nan Li ◽  
...  

When the ordinary heat pump air conditioning system of a pure electric vehicle runs at ultra-low temperature, the discharge temperature of compressor will be too high and the heating capacity of the system will decay seriously, it will lead to inactivity of the heating system. In order to solve this problem, a modification is put forward, and an experiment is also designed. The experimental results show that in the same conditions, this new heating system increases more than 20% of the heating capacity; when the outside environment temperature is negative 20 degrees, the discharge temperature of compressor is below 60 degrees.


Sign in / Sign up

Export Citation Format

Share Document