Effects of rock fragment size and cover on overland flow hydraulics, local turbulence and sediment yield on an erodible soil surface

1994 ◽  
Vol 19 (2) ◽  
pp. 115-135 ◽  
Author(s):  
Kristin Bunte ◽  
Jean Poesen
2021 ◽  
Author(s):  
Justin Johnson ◽  
Jason Williams ◽  
Phillip Guertin ◽  
Steven Archer ◽  
Philip Heilman ◽  
...  

<p>Shrub encroachment of semiarid grasslands is influenced by connected runoff and erosion patterns that preferentially accumulate resources under vegetated patches (canopy microsites) and deplete interspaces. Soil loss from dryland hillslopes results when areas of bare ground become structurally and functionally connected through overland flow. Although these patterns have been well-described, uncertainty remains regarding how these feedbacks respond to restoration practices. This study compared the structure and hydrologic function of a shrub-encroached semiarid grassland treated five years prior with the herbicide, tebuthiuron, to that of an adjacent untreated grassland. Through a series of hydrologic experiments conducted at increasing spatial scales, vegetation and soil structural patterns were related to runoff and erosion responses. At a fine scale (0.5 m<sup>2</sup>), rainfall simulations (120 mm·h<sup>-1</sup> rainfall intensity; 45 min) showed herbicided shrub canopy microsites had greater infiltration capacities (105 and 71 mm·h<sup>-1</sup> terminal infiltration rates) and were less susceptible to splash-sheet erosion (3 and 26 g sediment yield) than untreated shrub canopy microsites, while interspaces were statistically comparable between study sites. Concentrated flow simulations at a coarse scale (~9 m<sup>2</sup>) revealed that gaps between the bases of vegetation (i.e. basal gaps) > 2 m<sup></sup>were positively related to both concentrated flow runoff (r = 0.72, p = 0.008) and sediment yield (r = 0.70, p = 0.012). Modeled hillslope-scale (50 m<sup>2</sup>) runoff and erosion (120 mm·h<sup>-1</sup> rainfall intensity; 45 min) indicated less soil loss in the tebuthiuron-treated site (1.78 Mg·ha<sup>-1</sup> tebuthiuron; 3.19 Mg·ha<sup>-1</sup> untreated), even though runoff was similar between sites. Our results suggest interspaces in shrub-encroached grasslands continue to be runoff sources following herbicide-induced shrub mortality and may be indicators of runoff responses at larger spatial scales. In contrast, sediment sources are limited post-treatment due to lesser sediment detachment from sheet-splash and concentrated flow processes. Reduced sediment supplies provide evidence that connectivity feedbacks that sustain a shrub-dominant ecological state may have been dampened post-treatment. Our study also highlights the utility of simple measures of structural connectivity, such as basal gaps, as an indicator of hillslope susceptibility to increased runoff and erosion.</p>


2013 ◽  
Vol 17 (1) ◽  
pp. 87-101 ◽  
Author(s):  
A. Peñuela ◽  
M. Javaux ◽  
C. L. Bielders

Abstract. A major challenge in present-day hydrological sciences is to enhance the performance of existing distributed hydrological models through a better description of subgrid processes, in particular the subgrid connectivity of flow paths. The Relative Surface Connection (RSC) function was proposed by Antoine et al. (2009) as a functional indicator of runoff flow connectivity. For a given area, it expresses the percentage of the surface connected to the outflow boundary (C) as a function of the degree of filling of the depression storage. This function explicitly integrates the flow network at the soil surface and hence provides essential information regarding the flow paths' connectivity. It has been shown that this function could help improve the modeling of the hydrograph at the square meter scale, yet it is unknown how the scale affects the RSC function, and whether and how it can be extrapolated to other scales. The main objective of this research is to study the scale effect on overland flow connectivity (RSC function). For this purpose, digital elevation data of a real field (9 × 3 m) and three synthetic fields (6 × 6 m) with contrasting hydrological responses were used, and the RSC function was calculated at different scales by changing the length (l) or width (w) of the field. To different extents depending on the microtopography, border effects were observed for the smaller scales when decreasing l or w, which resulted in a strong decrease or increase of the maximum depression storage, respectively. There was no scale effect on the RSC function when changing w, but a remarkable scale effect was observed in the RSC function when changing l. In general, for a given degree of filling of the depression storage, C decreased as l increased, the change in C being inversely proportional to the change in l. However, this observation applied only up to approx. 50–70% (depending on the hydrological response of the field) of filling of depression storage, after which no correlation was found between C and l. The results of this study help identify the minimal scale to study overland flow connectivity. At scales larger than the minimal scale, the RSC function showed a great potential to be extrapolated to other scales.


Solid Earth ◽  
2015 ◽  
Vol 6 (2) ◽  
pp. 433-443 ◽  
Author(s):  
P. Sarah ◽  
M. Zonana

Abstract. Semi-arid areas where grazing is the main land use exhibit a "three-phase-mosaic" pattern of dominant surface patches: shrubs, trampling routes, and intershrub areas. This pattern differs from the "two-phase mosaic" seen in grazing-free semi-arid areas. The patches might create a positive feedback process in which enhanced infiltration beneath shrubs minimizes overland flow from under their canopies, thereby strengthening the sink–source mechanism by which overland flow generated between shrubs rapidly infiltrates into the soil beneath them, where it deposits soil particles, litter, nutrients and organic matter, thereby enhancing infiltration by changing the local microtopography, and improving soil properties. To analyze sink–source relationships among the patches in grazed areas in rangelands of the semi-arid northern Negev region of Israel, we constructed small runoff plots, 0.25–1.0 m2 in area, of five types: shrub (Sarcopoterium spinosum), intershrub, route, route–shrub combination, and intershrub–shrub combination. The shrubs always occupied the downslope part of the plot. Overland flow and sediment deposits were measured in all plots during 2007/8 and 2008/9. The combined plots yielded much less overland flow and sediments than intershrub, routes and shrub ones, indicating that the shrubs absorbed almost all the yields of the upper part of their plots. The shrubs generated less runoff and sediments than routes and intershrubs; runoff flows from the routes and intershrubs were similar; sediment yield was highest in the intershrubs. Thus, runoff yield exhibited a two-phase mosaic pattern, and sediment yield, i.e., soil erosion, a three-phase mosaic pattern.


2019 ◽  
Vol 194 ◽  
pp. 104324 ◽  
Author(s):  
Ebrahim Omidvar ◽  
Zeynab Hajizadeh ◽  
Hoda Ghasemieh

Proceedings ◽  
2019 ◽  
Vol 30 (1) ◽  
pp. 35 ◽  
Author(s):  
Telak ◽  
Bogunovic ◽  
Rodrigo-Comino

Humans are the driving factor of soil erosion and degradation. Therefore, sustainable land management practices should be developed and applied. The aim of this study was to determine land management impacts on soil properties, soil loss and nutrient loss in 3 different treatments; grass-covered vineyard (GCV), tilled vineyard (TV), and tilled hazelnut orchard (HO). The study area is located in Orahovica, Croatia (45°31′ N, 17°51′ E; elevation 230 m) on ~7° slope. The soil under the study area was classified as a Stagnosol. 8 rainfall simulations (58 mm h−1, during 30 min, over 0.785 m2 plots) were performed at each treatment where the next data were noted: ponding time, runoff time, and collection of overland flow. Soil samples were taken for determination of mean weight diameter (MWD), water stable aggregates (WSA), P2O5 content, and organic matter content. Analyses of sediment revealed concentrations of P2O5 and N. All three treatments had significantly different values of MWD (GCV 3.30 mm; TV 2.94 mm; HO 2.16 mm), while WSA and organic matter significantly differs between GCV and HO. The infiltration rate showed no significant difference between treatments. Sediment yield was significantly the highest at the TV (21.01 g kg−1 runoff), while no significant difference was noted between GCV (2.91) and HO (6.59). Sediments of GCV treatment showed higher concentrations of P2O5 and N, compared to TV and HO. Nutrients loss was highest in the TV (450.3 g P2O5 ha−1; 1891.7 g N ha−1) as a result of highest sediment yield, despite the fact GCV had the highest nutrients concentrations. Results indicate that land management (and/or tillage) affects soil properties and their stability. Even tough HO was tilled and had the lowest values of organic matter, WSA, and MWD, measurements were performed immediately after tillage where the plant residues reduced potential erodibility of the soil. Such results reveal that tillage should be avoided in vineyard and hazelnut production in order to prevent soil and nutrient losses.


Soil Research ◽  
1995 ◽  
Vol 33 (6) ◽  
pp. 1041 ◽  
Author(s):  
A Costantini ◽  
RJ Loch ◽  
SF Glanville ◽  
DN Orange

The studies reported in this paper were designed to evaluate the potential for disposal of sewage sludge in commercial Pinus plantations at Beerburrum, 50 km north of Brisbane. Soil descriptions and measurements of hydraulic properties were made in three soils, covering the range of perceived site suitability for sludge application. Disc permeameters and a rainfall simulator were used to characterize surface infiltration properties both with and without sludge, and ponded rings were used to assess permeability of the upper B horizon. Although surface hydraulic conductivities were potentially high, infiltration into dry soil was reduced by water repellence associated with fungal matting at the soil surface and mycelia extending through the Al horizon. Surface runoff could be generated from dry soils by relatively low intensity rainfall events, and the rate and volume of runoff was not increased by broadcast sludge application. Hydraulic conductivities of the upper Bt horizons in the lateritic and yellow podzolic soils were high, suggesting that persistent perched watertable development was unlikely. However, the presence of bleached A2 horizons and gleyed Bt horizons with prominent mottling in these soils were interpreted as evidence of periodic regional ground-water intrusion. By contrast, hydraulic conductivity in the Bt horizon of the soloth was low, suggesting that locally restricted drainage occurs. Likely pathways of water movement were inferred for three representative soil types in the proposed sludge application project. There is potential for both Hortonian runoff when antecedent conditions are dry, and saturated runoff during prolonged wet periods. Potential off-site pollution could therefore occur if either solids or solutes from the sludge are susceptible to transport. In addition, preferential how paths of water infiltration were demonstrated, and the potential for accelerated water and solute movement to ground watertables was inferred. The studies reported in this, and the second, paper in the series were used to appraise the potential for either surface water or ground water pollution from land-based sludge disposal.


2014 ◽  
Vol 78 (2) ◽  
pp. 589-597 ◽  
Author(s):  
Bing Wang ◽  
Guang-Hui Zhang ◽  
X.C. Zhang ◽  
Zhen-Wei Li ◽  
Zi-Long Su ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document