shrub canopy
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 14)

H-INDEX

15
(FIVE YEARS 1)

BIOSCIENTIAE ◽  
2021 ◽  
Vol 18 (2) ◽  
pp. 85
Author(s):  
Dienny Redha Rahmani ◽  
Gunawan Gunawan

A good urban structure and activity need a green spaces to increase its ecological function. However, trees will not fully be able to fill an important space in urban areas while the shrub woody vegetation has the potential to fill that space. Therefore, the aim of this study is to determine the  potential of shrub as a constituent of urban vegetation so it can be used as material information about the planning of land use in the district of Cempaka. This sudy was conducted by determining the three sampling stations and 3 plots of 4m x 4m in wide on each station with data based on a map of shrub green space in District of Cempaka using purposive sampling method, the analysis performed includes the analysis of shrub canopy, measured environmental parameters, and data were analyzed with analysis of canopy volume, Pearson correlation analysis and analysis of Importance Value Index (IVI). Shrub vegetation estimation results indicate that the shrub canopy volume in the district of Cempaka is up to 22,462,878.50 m3 in the bush land area of 5675.116 hectares. Pearson correlation analysis showed that the shrub canopy volume in the district Cempaka effect on changes in environmental factors. Besides the most dominant species is Ficus fistulosa Reinw. ex Bl with IVI of 56.1%. Based on the results obtained can be concluded that the shrub has potential as a constituent of vegetation in urban green space.


2021 ◽  
Vol 9 ◽  
Author(s):  
Laiye Qu ◽  
Bingbing Wang ◽  
Xinyu Zhang ◽  
Minggang Wang

Widely distributed shrubs in drylands can locally alter soil physicochemical properties, which distinguish soil under plant canopy from soil outside the canopy. In the present study, we used a dominant shrub species Artemisia gmelinii in a semiarid land, SW China, to investigate the consequences of “shrub resource islands” for soil microbial communities and enzymatic activities. Such investigation was made at four sites that differed in rates of rainfall to examine how the consequences were altered by variation in the local climate. The results showed that A. gmelinii enhanced fungal abundance but did not influence bacterial abundance, resulting in higher total microbial abundance and fungal-to-bacterial ratio in under-canopy soil compared to outside-canopy soil. Microbial community composition also differed between the two soils, but this difference only occurred at sites of low rainfall. Redundancy analysis revealed that such composition was attributed to variation in soil water content, bulk density, and total phosphorus as a result of shrub canopy and varying rates of rainfall. Activities of hydrolytic enzymes (β-1,4-glucosidase, β-1,4-N-acetylglucosaminidase, alkaline phosphatase, and leucine aminopeptidase) were higher in under-canopy soil than in outside-canopy soil, among which C-acquisition enzyme, β-1,4-glucosidase, and P-acquisition enzyme, alkaline phosphatase, were also higher in the soil of high rainfall. The overall pattern of enzyme activities did not show differences between under- and outside-canopy soils, but it separated the sites of high rate from that of low rates of rainfall. This pattern was primarily driven by variation in soil physicochemical properties rather than variation in soil microbial community, suggesting that the distribution pattern of enzyme activities may be more sensitive to variation in rainfall than to shrub canopy. In conclusion, our study shows that shrub species A. gmelinii can shift the soil microbial community to be fungal-dominant and increase hydrolytic enzyme activities, and such effect may depend on local climatic variation, for example, rainfall changes in the semiarid land. The findings of this study highlight the important roles of shrub vegetation in soil biological functions and the sensitivity of such roles to climatic variation in semiarid ecosystems.


2021 ◽  
Author(s):  
Mohamed Idbella ◽  
Francesca De Filippis ◽  
Maurizio Zotti ◽  
Giuseppina Sequino ◽  
Ahmed M. Abd-ElGawad ◽  
...  

Abstract Background: Shrub encroachment (SE) is a phenomenon in which grasses and herbaceous vegetation are replaced by woody shrubs. The progressive spread of shrubs represents a form of land cover change that is widespread in arid and semi-arid grassland ecosystems. Many previous studies have highlighted the effects of SE on soil respiration rates and nutrient storage, but little is known about its belowground effects. While previous work considered shrubs to be non-species specific or as a single intervening species, we selected an Ampelodemsos mauritanicus grassland and six coexisting shrubs (i.e. Pistacia lentiscus L., Juniperus phoenicea L., Myrtus communis L., Rosmarinus officinalis L., Olea europaea L., and Euphorbia dendroides L.) to investigate the effects of their encroachment on soil microbiota. We used high-throughput sequencing, coupled with soil chemical analyses and litter using 13C CPMAS NMR spectroscopy.Results: Results showed a strong influence of shrub canopy on bacterial and fungal community diversity, species richness and overall community composition in the soil. Litter chemistry was dominated by O-alkyl-C, with the highest content in Ampelodesmsos and Euphorbia, but richer of aromatic C in Pistacia and Rosmarinus. Bacterial diversity was highest under Juniperus and Euphorbia, while lowest under Rosmarinus and grassland. Conversely, fungal diversity was highest under Olea and Euphorbia, while lowest under Myrtus and grassland. Moreover, soil C and N contents were highest under Olea, Pistacia and Myrtus compared to the other canopies. In addition, grassland and Rosmarinus had the highest Fe content. Furthermore, increased co-occurrence network size and connectivity were recorded under shrubs compared to the grassland matrix.Conclusions: Our results suggest that the individual effect of each shrub on the grassland matrix depends mainly on the chemical properties of the shrub litter, which alters the chemical profile of the soil and, in cascade, shapes the associated microbiota.


2021 ◽  
Author(s):  
Justin Johnson ◽  
Jason Williams ◽  
Phillip Guertin ◽  
Steven Archer ◽  
Philip Heilman ◽  
...  

<p>Shrub encroachment of semiarid grasslands is influenced by connected runoff and erosion patterns that preferentially accumulate resources under vegetated patches (canopy microsites) and deplete interspaces. Soil loss from dryland hillslopes results when areas of bare ground become structurally and functionally connected through overland flow. Although these patterns have been well-described, uncertainty remains regarding how these feedbacks respond to restoration practices. This study compared the structure and hydrologic function of a shrub-encroached semiarid grassland treated five years prior with the herbicide, tebuthiuron, to that of an adjacent untreated grassland. Through a series of hydrologic experiments conducted at increasing spatial scales, vegetation and soil structural patterns were related to runoff and erosion responses. At a fine scale (0.5 m<sup>2</sup>), rainfall simulations (120 mm·h<sup>-1</sup> rainfall intensity; 45 min) showed herbicided shrub canopy microsites had greater infiltration capacities (105 and 71 mm·h<sup>-1</sup> terminal infiltration rates) and were less susceptible to splash-sheet erosion (3 and 26 g sediment yield) than untreated shrub canopy microsites, while interspaces were statistically comparable between study sites. Concentrated flow simulations at a coarse scale (~9 m<sup>2</sup>) revealed that gaps between the bases of vegetation (i.e. basal gaps) > 2 m<sup></sup>were positively related to both concentrated flow runoff (r = 0.72, p = 0.008) and sediment yield (r = 0.70, p = 0.012). Modeled hillslope-scale (50 m<sup>2</sup>) runoff and erosion (120 mm·h<sup>-1</sup> rainfall intensity; 45 min) indicated less soil loss in the tebuthiuron-treated site (1.78 Mg·ha<sup>-1</sup> tebuthiuron; 3.19 Mg·ha<sup>-1</sup> untreated), even though runoff was similar between sites. Our results suggest interspaces in shrub-encroached grasslands continue to be runoff sources following herbicide-induced shrub mortality and may be indicators of runoff responses at larger spatial scales. In contrast, sediment sources are limited post-treatment due to lesser sediment detachment from sheet-splash and concentrated flow processes. Reduced sediment supplies provide evidence that connectivity feedbacks that sustain a shrub-dominant ecological state may have been dampened post-treatment. Our study also highlights the utility of simple measures of structural connectivity, such as basal gaps, as an indicator of hillslope susceptibility to increased runoff and erosion.</p>


2020 ◽  
pp. 1-9
Author(s):  
Xuanping Qin ◽  
Zhimin Liu ◽  
Minghu Liu ◽  
Wei Liang ◽  
Carol C. Baskin ◽  
...  

Abstract Interception by plant canopies during wind dispersal can affect the final destination of diaspores. However, how the interaction of wind speed, canopy type and diaspore attributes affects interception of diaspores by the plant canopy has rarely been studied. We investigated canopy interception for 29 species with different diaspore attributes, six canopy types and six wind speeds in controlled experiments in a wind tunnel. Shrub canopy interception of diaspores were controlled by wind speed and diaspore attributes, but the latter had a greater influence on canopy interception than the former. At low wind speed, diaspore wing loading had a large influence on canopy interception, whereas at high wind speed, diaspore projection area had a large influence. The chance of canopy interception at a particular wind speed was additionally affected by the type of canopy. This study increases our knowledge of the dispersal process, corrects the previous understanding of diaspore dispersal potential and improves the theoretical basis for predicting spatial pattern and dynamics of plant populations.


2020 ◽  
Vol 21 (8) ◽  
pp. 216-228
Author(s):  
Nargol Ghazian ◽  
Mario Zuliani ◽  
Christopher Lortie
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document