scholarly journals Using UAV Technology to Collect Vertical Temperature and Relative Humidity Profiles over a Tropical Montane Rainforest

2018 ◽  
Author(s):  
Elizabeth Prior ◽  
James Brumbelow ◽  
Gretchen Miller ◽  
Georgianne Moore
2021 ◽  
Vol 129 ◽  
pp. 107965
Author(s):  
Wenjie Liu ◽  
Yamin Jiang ◽  
Qiu Yang ◽  
Huai Yang ◽  
Yide Li ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
R. K. Gangwar ◽  
B. S. Gohil ◽  
A. K. Mathur

The present paper deals with the retrieval of the atmospheric layer averaged relative humidity profiles using data from the Microwave Humidity Sounder (MHS) onboard the MetOp satellite. The retrieval has been innovatively performed by firstly retrieving humidity for pairs of thick overlapping layers (TOLs) used subsequently to derive humidity for associated thin isolated layer (TIL). A water vapour dependent (WVD) algorithm has been developed and applied to infer the humidity of TOLs. Thus, the retrieved profiles have been finally compared with standard algorithm (NORM). These algorithms have been developed based on radiative transfer simulations and study of sensitivities of MHS channels on humidity of various types of layers (TOL, TIL). The algorithm has been tested with MHS data and validated using concurrent radiosonde as well as NCEP reanalysis data indicating profile errors of ~15% and ~19%, respectively.


2020 ◽  
Author(s):  
Marian Amoakowaah Osei ◽  
Leonard K Amekudzi ◽  
Craig R. Ferguson ◽  
Sylvester Kojo Danuor

2014 ◽  
Vol 7 (5) ◽  
pp. 1201-1211 ◽  
Author(s):  
F. Navas-Guzmán ◽  
J. Fernández-Gálvez ◽  
M. J. Granados-Muñoz ◽  
J. L. Guerrero-Rascado ◽  
J. A. Bravo-Aranda ◽  
...  

Abstract. In this paper, we outline an iterative method to calibrate the water vapour mixing ratio profiles retrieved from Raman lidar measurements. Simultaneous and co-located radiosonde data are used for this purpose and the calibration results obtained during a radiosonde campaign in summer and autumn 2011 are presented. The water vapour profiles measured during night-time by the Raman lidar and radiosondes are compared and the differences between the methodologies are discussed. Then, a new approach to obtain relative humidity profiles by combination of simultaneous profiles of temperature (retrieved from a microwave radiometer) and water vapour mixing ratio (from a Raman lidar) is addressed. In the last part of this work, a statistical analysis of water vapour mixing ratio and relative humidity profiles obtained during 1 year of simultaneous measurements is presented.


Ecosphere ◽  
2019 ◽  
Vol 10 (8) ◽  
Author(s):  
Ondrej Mottl ◽  
Nichola S. Plowman ◽  
Vojtech Novotny ◽  
Bradley Gewa ◽  
Maling Rimandai ◽  
...  

2020 ◽  
Vol 12 (16) ◽  
pp. 2631
Author(s):  
Marian Amoakowaah Osei ◽  
Leonard Kofitse Amekudzi ◽  
Craig R. Ferguson ◽  
Sylvester Kojo Danuor

The vertical profiles of temperature and water vapour from the Atmospheric InfraRed Sounder (AIRS) have been validated across various regions of the globe as an effort to provide a substitute for radiosonde observations. However, there is a paucity of inter-comparisons over West Africa where local convective processes dominate and radiosonde observations (RAOBs) are limited. This study validates AIRS temperature and relative humidity profiles for selected radiosonde stations in West Africa. Radiosonde data were obtained from the AMMA and DACCIWA campaigns which spanned 2006–2008 and June–July 2016 respectively and offered a period of prolonged radiosonde observations in West Africa. AIRS performance was evaluated with the bias and root mean square difference (RMSD) at seven RAOB stations which were grouped into coastal and inland. Evaluation was performed on diurnal and seasonal timescales, cloud screening conditions and derived thunderstorm instability indices. At all timescales, the temperature RMSD was higher than the AIRS accuracy mission goal of ±1 K. Relative humidity RMSD was satisfactory with deviations <20% and <50% for both lower and upper troposphere respectively. AIRS retrieval of water vapour under cloudy and cloud-free conditions had no significant difference whereas cloud-free temperature was found to be more accurate. The seasonal evolution of some thunderstorm convective indices were also found to be comparable for AIRS and RAOB. The ability of AIRS to capture the evolution of these indices imply it will be a useful dataset for the African Science for Weather Information and Forecasting Techniques (SWIFT) high impact weather studies.


Sign in / Sign up

Export Citation Format

Share Document