scholarly journals Retrieval of Layer Averaged Relative Humidity Profiles from MHS Observations over Tropical Region

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
R. K. Gangwar ◽  
B. S. Gohil ◽  
A. K. Mathur

The present paper deals with the retrieval of the atmospheric layer averaged relative humidity profiles using data from the Microwave Humidity Sounder (MHS) onboard the MetOp satellite. The retrieval has been innovatively performed by firstly retrieving humidity for pairs of thick overlapping layers (TOLs) used subsequently to derive humidity for associated thin isolated layer (TIL). A water vapour dependent (WVD) algorithm has been developed and applied to infer the humidity of TOLs. Thus, the retrieved profiles have been finally compared with standard algorithm (NORM). These algorithms have been developed based on radiative transfer simulations and study of sensitivities of MHS channels on humidity of various types of layers (TOL, TIL). The algorithm has been tested with MHS data and validated using concurrent radiosonde as well as NCEP reanalysis data indicating profile errors of ~15% and ~19%, respectively.

2020 ◽  
Author(s):  
Marian Amoakowaah Osei ◽  
Leonard K Amekudzi ◽  
Craig R. Ferguson ◽  
Sylvester Kojo Danuor

2014 ◽  
Vol 7 (5) ◽  
pp. 1201-1211 ◽  
Author(s):  
F. Navas-Guzmán ◽  
J. Fernández-Gálvez ◽  
M. J. Granados-Muñoz ◽  
J. L. Guerrero-Rascado ◽  
J. A. Bravo-Aranda ◽  
...  

Abstract. In this paper, we outline an iterative method to calibrate the water vapour mixing ratio profiles retrieved from Raman lidar measurements. Simultaneous and co-located radiosonde data are used for this purpose and the calibration results obtained during a radiosonde campaign in summer and autumn 2011 are presented. The water vapour profiles measured during night-time by the Raman lidar and radiosondes are compared and the differences between the methodologies are discussed. Then, a new approach to obtain relative humidity profiles by combination of simultaneous profiles of temperature (retrieved from a microwave radiometer) and water vapour mixing ratio (from a Raman lidar) is addressed. In the last part of this work, a statistical analysis of water vapour mixing ratio and relative humidity profiles obtained during 1 year of simultaneous measurements is presented.


2015 ◽  
Vol 15 (20) ◽  
pp. 29497-29521
Author(s):  
K. Gierens ◽  
K. Eleftheratos

Abstract. Theoretical derivations are given on the change of upper-tropospheric humidity (UTH) in a warming climate. Considered view is that the atmosphere, getting moister with increasing temperatures, will retain a constant relative humidity. In the present study we show that the upper-tropospheric humidity, a weighted mean over a relative humidity profile, will change in spite of constant relative humidity. The simple reason for this is that the weighting function, that defines UTH, changes in a moister atmosphere. Through analytical calculations using observations and through radiative transfer calculations we demonstrate that two quantities that define the weighting function of UTH can change: the water vapour scale height and the peak emission altitude. Applying these changes to real profiles of relative humidity shows that absolute UTH changes typically do not exceed 1 %. If larger changes would be observed they would be an indication of climatological changes of relative humidity. As such, an increase in UTH between 1980 and 2009 in the northern midlatitudes as shown by earlier studies using HIRS data, may be an indication of an increase in relative humidity as well.


2020 ◽  
Vol 12 (16) ◽  
pp. 2631
Author(s):  
Marian Amoakowaah Osei ◽  
Leonard Kofitse Amekudzi ◽  
Craig R. Ferguson ◽  
Sylvester Kojo Danuor

The vertical profiles of temperature and water vapour from the Atmospheric InfraRed Sounder (AIRS) have been validated across various regions of the globe as an effort to provide a substitute for radiosonde observations. However, there is a paucity of inter-comparisons over West Africa where local convective processes dominate and radiosonde observations (RAOBs) are limited. This study validates AIRS temperature and relative humidity profiles for selected radiosonde stations in West Africa. Radiosonde data were obtained from the AMMA and DACCIWA campaigns which spanned 2006–2008 and June–July 2016 respectively and offered a period of prolonged radiosonde observations in West Africa. AIRS performance was evaluated with the bias and root mean square difference (RMSD) at seven RAOB stations which were grouped into coastal and inland. Evaluation was performed on diurnal and seasonal timescales, cloud screening conditions and derived thunderstorm instability indices. At all timescales, the temperature RMSD was higher than the AIRS accuracy mission goal of ±1 K. Relative humidity RMSD was satisfactory with deviations <20% and <50% for both lower and upper troposphere respectively. AIRS retrieval of water vapour under cloudy and cloud-free conditions had no significant difference whereas cloud-free temperature was found to be more accurate. The seasonal evolution of some thunderstorm convective indices were also found to be comparable for AIRS and RAOB. The ability of AIRS to capture the evolution of these indices imply it will be a useful dataset for the African Science for Weather Information and Forecasting Techniques (SWIFT) high impact weather studies.


2020 ◽  
Vol 41 (3) ◽  
pp. 247-260
Author(s):  
Roy Candra Sigalingging ◽  
David Chow ◽  
Steve Sharples

In a hot and humid tropical climate, natural ventilation brings high levels of moisture into dwellings that, together with occupant activity, can result in very elevated internal relative humidity levels. Coupling these high relative humidities with high internal air temperatures creates occupant thermal discomfort, which is typically ameliorated in the tropics using energy-intensive air conditioning systems. This paper has investigated the potential benefits for thermal comfort and energy usage of applying the German Passivhaus standard to tropical dwellings. By creating a super insulated and air-tight envelope, the Passivhaus standard reduces fabric heat transfer, controls air infiltration and provides low-energy comfort. Applying this approach to a tropical terraced house might be effective but could, potentially, have an adverse impact on mechanical cooling demand. This study took an actual terraced property in Jakarta, Indonesia and thermally modelled its performance as insulation and airtightness levels were incrementally improved up to the Passivhaus standard. Field measurements in the dwelling of air temperature and relative humidity were used to validate the thermal model of the existing house. The validated model then tested the feasibility of meeting the Passivhaus energy standard for cooling in the modified tropical house. Simulation allowed the effects of air conditioning (AC) and dehumidifiers on thermal comfort and cooling loads to be investigated. The research develop the Passivhaus building model that had the floor insulation removed to let the ground floor act as a thermal sink and potentially provide radiant cooling. Analysis revealed that the building’s predicted air temperatures were affected in a beneficial way by having the Passivhaus without floor insulation. Practical application: Cooling in hot and humid tropical region is an energy-intensive approach. Design approaches that can bring comfort and save energy for the occupant are essential. The success of Passivhaus standard in mild climate might be transferable to bring comfort in tropical housing. Best practice can be developed by analysing the Passivhaus building performance in hot and humid tropical region.


2011 ◽  
Vol 137 ◽  
pp. 297-301
Author(s):  
Bin Gui Wu ◽  
Zhao Yu Wang ◽  
Yi Yang Xie

The air flow and turbulent fluxes features during the radiation fog formed on the dawn of 17 October 2007 is discussed in order to study the mechanism of an unexpected night fog, based on the meteorological and turbulent data obtained from the 250 m height tower in Tianjin, as well as the NCEP reanalysis data and other observational data. The results show that the lower layer easterly flow coming from the south region of the Northeast cold high pressure led to remarkable temperature fall and humidity value increase in the daytime prior to the fog formation, which quickly turned the dry boundary layer to be moist. The vapor transfer indicated that the vapor of the radiation fog was provided by the easterly advection from Bohai Sea, not from local area. Turbulent vapor fluxes increased ten times as that before the fog. The horizontal vapor fluxes transported against the wind direction, which led to the escape of water vapor from Tianjin city and the dissipation of fog.


2012 ◽  
Vol 12 (2) ◽  
pp. 403-413 ◽  
Author(s):  
S. Tajbakhsh ◽  
P. Ghafarian ◽  
F. Sahraian

Abstract. In this paper, one meteorological case study for two Iranian airports are presented. Attempts have been made to study the predefined threshold amounts of some instability indices such as vertical velocity and relative humidity. Two important output variables from a numerical weather prediction model have been used to survey thunderstorms. The climatological state of thunder days in Iran has been determined to aid in choosing the airports for the case studies. The synoptic pattern, atmospheric thermodynamics and output from a numerical weather prediction model have been studied to evaluate the occurrence of storms and to verify the threshold instability indices that are based on Gordon and Albert (2000) and Miller (1972). Using data from the Statistics and Data Center of the Iran Meteorological Organization, 195 synoptic stations were used to study the climatological pattern of thunderstorm days in Iran during a 15-yr period (1991–2005). Synoptic weather maps and thermodynamic diagrams have been drawn using data from synoptic stations and radiosonde data. A 15-km resolution version of the WRF numerical model has been implemented for the Middle East region with the assistance of global data from University Corporation for Atmospheric Research (UCAR). The Tabriz airport weather station has been selected for further study due to its high frequency of thunderstorms (more than 35 thunderstorm days per year) and the existence of an upper air station. Despite the fact that storms occur less often at the Tehran weather station, the station has been chosen as the second case study site due to its large amount of air traffic. Using these two case studies (Tehran at 00:00 UTC, 31 April 2009 and Tabriz at 12:00 UTC, 31 April 2009), the results of this research show that the threshold amounts of 30 °C for KI, −2 °C for LI and −3 °C for SI suggests the occurrence and non-occurrence of thunderstorms at the Tehran and Tabriz stations, respectively. The WRF model output of vertical velocity and relative humidity are the two most important indices for examining storm occurrence, and they have a numerical threshold of 1 m s−1 and 80%, respectively. These results are comparable to other studies that have examined thunderstorm occurrence.


Sign in / Sign up

Export Citation Format

Share Document