scholarly journals CAS FGOALS-f3-L large-ensemble simulations for the CMIP6 Polar Amplification Model Intercomparison Project

2020 ◽  
Author(s):  
Bian He ◽  
Xiaoqi Zhang ◽  
Anmin Duan ◽  
Qing Bao ◽  
Yimin Liu ◽  
...  
Author(s):  
Bian He ◽  
Xiaoqi Zhang ◽  
Anmin Duan ◽  
Qing Bao ◽  
Yimin Liu ◽  
...  

AbstractLarge-ensemble simulations of the atmosphere-only time-slice experiments for the Polar Amplification Model Intercomparison Project (PAMIP) were carried out by the model group of the Chinese Academy of Sciences (CAS) Flexible Global Ocean-Atmosphere-Land System (FGOALS-f3-L). Eight groups of experiments forced by different combinations of the sea surface temperature (SST) and sea ice concentration (SIC) for pre-industrial, present-day, and future conditions were performed and published. The time-lag method was used to generate the 100 ensemble members, with each member integrating from 1 April 2000 to 30 June 2001 and the first two months as the spin-up period. The basic model responses of the surface air temperature (SAT) and precipitation were documented. The results indicate that Arctic amplification is mainly caused by Arctic SIC forcing changes. The SAT responses to the Arctic SIC decrease alone show an obvious increase over high latitudes, which is similar to the results from the combined forcing of SST and SIC. However, the change in global precipitation is dominated by the changes in the global SST rather than SIC, partly because tropical precipitation is mainly driven by local SST changes. The uncertainty of the model responses was also investigated through the analysis of the large-ensemble members. The relative roles of SST and SIC, together with their combined influence on Arctic amplification, are also discussed. All of these model datasets will contribute to PAMIP multi-model analysis and improve the understanding of polar amplification.


2018 ◽  
Vol 18 (3) ◽  
pp. 2287-2305 ◽  
Author(s):  
Rick D. Russotto ◽  
Thomas P. Ackerman

Abstract. The polar amplification of warming and the ability of the Intertropical Convergence Zone (ITCZ) to shift to the north or south are two very important problems in climate science. Examining these behaviors in global climate models (GCMs) running solar geoengineering experiments is helpful not only for predicting the effects of solar geoengineering but also for understanding how these processes work under increased carbon dioxide (CO2). Both polar amplification and ITCZ shifts are closely related to the meridional transport of moist static energy (MSE) by the atmosphere. This study examines changes in MSE transport in 10 fully coupled GCMs in experiment G1 of the Geoengineering Model Intercomparison Project (GeoMIP), in which the solar constant is reduced to compensate for the radiative forcing from abruptly quadrupled CO2 concentrations. In G1, poleward MSE transport decreases relative to preindustrial conditions in all models, in contrast to the Coupled Model Intercomparison Project phase 5 (CMIP5) abrupt4xCO2 experiment, in which poleward MSE transport increases. We show that since poleward energy transport decreases rather than increases, and local feedbacks cannot change the sign of an initial temperature change, the residual polar amplification in the G1 experiment must be due to the net positive forcing in the polar regions and net negative forcing in the tropics, which arise from the different spatial patterns of the simultaneously imposed solar and CO2 forcings. However, the reduction in poleward energy transport likely plays a role in limiting the polar warming in G1. An attribution study with a moist energy balance model shows that cloud feedbacks are the largest source of uncertainty regarding changes in poleward energy transport in midlatitudes in G1, as well as for changes in cross-equatorial energy transport, which are anticorrelated with ITCZ shifts.


2018 ◽  
Author(s):  
Fahad Saeed ◽  
Ingo Bethke ◽  
Stefan Lange ◽  
Ludwig Lierhammer ◽  
Hideo Shiogama ◽  
...  

2021 ◽  
pp. 1-39
Author(s):  
Jan Streffing ◽  
Tido Semmler ◽  
Lorenzo Zampieri ◽  
Thomas Jung

AbstractThe impact of Arctic sea ice decline on the weather and climate in mid-latitudes is still much debated, with observation suggesting a strong and models a much weaker link. In this study, we use the atmospheric model OpenIFS, in a set of model experiments following the protocol outlined in the Polar Amplification Model Intercomparison Project (PAMIP), to investigate whether the simulated atmospheric response to future changes in Arctic sea ice fundamentally depends on model resolution. More specifically, we increase the horizontal resolution of the model from 125km to 39km with 91 vertical levels; in a second step resolution is further increased to 16km with 137 levels in the vertical. The model does produce a response to sea ice decline with a weaker mid latitude Atlantic jet and increased blocking in the high latitude Atlantic, but no sensitivity to resolution can be detected with 100 members. Furthermore we find that the ensemble convergence toward the mean is not impacted by the model resolutions considered here.


2021 ◽  
Author(s):  
Jan Streffing ◽  
Tido Semmler ◽  
Lorenzo Zampieri ◽  
Thomas Jung

<p>The impact of Arctic sea ice decline on the weather and climate in mid-latitudes is still much debated, with observation suggesting a strong and models a much weaker link. In this study, we use the atmospheric model OpenIFS, in a set of model experiments following the protocol outlined in the Polar Amplification Model Intercomparison Project (PAMIP), to investigate whether the simulated atmospheric response to future changes in Arctic sea ice fundamentally depends on model resolution. More specifically, we increase the horizontal resolution of the model from 125km to 39km with 91 vertical levels; in a second step resolution is further increased to 16km with 137 levels in the vertical. We find that neither the mean atmospheric response nor the ensemble convergence toward the mean are strongly impacted by the model resolutions considered here.</p>


2018 ◽  
Author(s):  
Doug M. Smith ◽  
James A. Screen ◽  
Clara Deser ◽  
Judah Cohen ◽  
John C. Fyfe ◽  
...  

Abstract. Polar amplification – the phenomenon that external radiative forcing produces a larger change in surface temperature at high latitudes than the global average – is a key aspect of anthropogenic climate change, but its causes and consequences are not fully understood. The Polar Amplification Model Intercomparison Project (PAMIP) contribution to the Sixth Coupled Model Intercomparison Project (CMIP6, Eyring et al. 2016) seeks to improve our understanding of this phenomenon through a coordinated set of numerical model experiments documented here. In particular, PAMIP will address the following primary questions: 1. What are the relative roles of local sea ice and remote sea surface temperature changes in driving polar amplification? 2. How does the global climate system respond to changes in Arctic and Antarctic sea ice? These issues will be addressed with multi-model simulations that are forced with different combinations of sea ice and/or sea surface temperatures representing present day, pre-industrial and future conditions. The use of three time periods allows the signals of interest to be diagnosed in multiple ways. Lower priority tier experiments are proposed to investigate additional aspects and provide further understanding of the physical processes. These experiments will address the following specific questions: What role does ocean-atmosphere coupling play in the response to sea ice? How and why does the atmospheric response to Arctic sea ice depend on the pattern of sea ice forcing? How and why does the atmospheric response to Arctic sea ice depend on the model background state? What are the roles of local sea ice and remote sea surface temperature in polar amplification, and the response to sea ice, over the recent period since 1979? How does the response to sea ice evolve on decadal and longer timescales? A key goal of PAMIP is to determine the real world situation using imperfect climate models. Although the experiments proposed here form a coordinated set, we anticipate a large spread across models. However, this spread will be exploited by seeking emergent constraints in which model uncertainty may be reduced by using an observable quantity that physically explains the inter-model spread. In summary, PAMIP will improve our understanding of the physical processes that drive polar amplification and its global climate impacts, thereby reducing the uncertainties in future projections and predictions of climate change and variability.


2020 ◽  
Vol 55 (7-8) ◽  
pp. 1779-1792
Author(s):  
Bryn Ronalds ◽  
Elizabeth A. Barnes ◽  
Rosie Eade ◽  
Yannick Peings ◽  
Michael Sigmond

2019 ◽  
Vol 12 (3) ◽  
pp. 1139-1164 ◽  
Author(s):  
Doug M. Smith ◽  
James A. Screen ◽  
Clara Deser ◽  
Judah Cohen ◽  
John C. Fyfe ◽  
...  

Abstract. Polar amplification – the phenomenon where external radiative forcing produces a larger change in surface temperature at high latitudes than the global average – is a key aspect of anthropogenic climate change, but its causes and consequences are not fully understood. The Polar Amplification Model Intercomparison Project (PAMIP) contribution to the sixth Coupled Model Intercomparison Project (CMIP6; Eyring et al., 2016) seeks to improve our understanding of this phenomenon through a coordinated set of numerical model experiments documented here. In particular, PAMIP will address the following primary questions: (1) what are the relative roles of local sea ice and remote sea surface temperature changes in driving polar amplification? (2) How does the global climate system respond to changes in Arctic and Antarctic sea ice? These issues will be addressed with multi-model simulations that are forced with different combinations of sea ice and/or sea surface temperatures representing present-day, pre-industrial and future conditions. The use of three time periods allows the signals of interest to be diagnosed in multiple ways. Lower-priority tier experiments are proposed to investigate additional aspects and provide further understanding of the physical processes. These experiments will address the following specific questions: what role does ocean–atmosphere coupling play in the response to sea ice? How and why does the atmospheric response to Arctic sea ice depend on the pattern of sea ice forcing? How and why does the atmospheric response to Arctic sea ice depend on the model background state? What have been the roles of local sea ice and remote sea surface temperature in polar amplification, and the response to sea ice, over the recent period since 1979? How does the response to sea ice evolve on decadal and longer timescales? A key goal of PAMIP is to determine the real-world situation using imperfect climate models. Although the experiments proposed here form a coordinated set, we anticipate a large spread across models. However, this spread will be exploited by seeking “emergent constraints” in which model uncertainty may be reduced by using an observable quantity that physically explains the intermodel spread. In summary, PAMIP will improve our understanding of the physical processes that drive polar amplification and its global climate impacts, thereby reducing the uncertainties in future projections and predictions of climate change and variability.


Sign in / Sign up

Export Citation Format

Share Document