scholarly journals Evaluation of the effect of low soil temperature stress on the land surface energy fluxes simulation in the site and global offline experiments

2020 ◽  
Author(s):  
Siguang Zhu ◽  
Haishan Chen ◽  
Yongjiu Dai ◽  
Xingjie Lu ◽  
Wei Shangguan ◽  
...  
2014 ◽  
Vol 11 (18) ◽  
pp. 5021-5046 ◽  
Author(s):  
R. Guzinski ◽  
H. Nieto ◽  
R. Jensen ◽  
G. Mendiguren

Abstract. In this study we evaluate a methodology for disaggregating land surface energy fluxes estimated with the Two-Source Energy Balance (TSEB)-based Dual-Temperature Difference (DTD) model which uses day and night polar orbiting satellite observations of land surface temperature (LST) as a remotely sensed input. The DTD model is run with MODIS input data at a spatial resolution of around 1 km while the disaggregation uses Landsat observations to produce fluxes at a nominal spatial resolution of 30 m. The higher-resolution modelled fluxes can be directly compared against eddy covariance (EC)-based flux tower measurements to ensure more accurate model validation and also provide a better visualization of the fluxes' spatial patterns in heterogeneous areas allowing for development of, for example, more efficient irrigation practices. The disaggregation technique is evaluated in an area covered by the Danish Hydrological Observatory (HOBE), in the west of the Jutland peninsula, and the modelled fluxes are compared against measurements from two flux towers: the first one in a heterogeneous agricultural landscape and the second one in a homogeneous conifer plantation. The results indicate that the coarse-resolution DTD fluxes disaggregated at Landsat scale have greatly improved accuracy as compared to high-resolution fluxes derived directly with Landsat data without the disaggregation. At the agricultural site the disaggregated fluxes display small bias and very high correlation (r ≈ 0.95) with EC-based measurements, while at the plantation site the results are encouraging but still with significant errors. In addition, we introduce a~modification to the DTD model by replacing the "parallel" configuration of the resistances to sensible heat exchange by the "series" configuration. The latter takes into account the in-canopy air temperature and substantially improves the accuracy of the DTD model.


2020 ◽  
Author(s):  
Brian Butterworth ◽  
Ankur Desai ◽  
Sreenath Paleri ◽  
Stefan Metzger ◽  
David Durden ◽  
...  

<p>Land surface heterogeneity influences patterns of sensible and latent heat flux, which in turn affect processes in the atmospheric boundary layer. However, gridded atmospheric models often fail to incorporate the influence of land surface heterogeneity due to differences between the temporal and spatial scales of models compared to the local, sub-grid processes. Improving models requires the scaling of surface flux measurements; a process made difficult by the fact that surface measurements usually find an imbalance in the energy budget.</p><p>The Chequamegon Heterogeneous Ecosystem Energy-balance Study Enabled by a High-density Extensive Array of Detectors (CHEESEHEAD19) was an observational experiment designed to investigate how the atmospheric boundary layer responds to scales of spatial heterogeneity in surface-atmosphere heat and water exchanges. The campaign was conducted from June – October 2019, measuring surface energy fluxes over a heterogeneous forest ecosystem as fluxes transitioned from latent heat-dominated summer through sensible heat-dominated fall. Observations were made by ground, airborne, and satellite platforms within the 10 x 10 km study region, which was chosen to match the scale of a typical model grid cell. The spatial distribution of energy fluxes was observed by an array of 20 eddy covariance towers and a low-flying aircraft. Mesoscale atmospheric properties were measured by a suite of LiDAR and sounding instruments, measuring winds, water vapor, temperature, and boundary layer development. Plant phenology was measured in-situ and mapped remotely using hyperspectral imaging.</p><p>The dense set of multi-scale observations of land-atmosphere exchange collected during the CHEESEHEAD field campaign permits combining the spatial and temporal distribution of energy fluxes with mesoscale surface and atmospheric properties. This provides an unprecedented data foundation to evaluate theoretical explanations of energy balance non-closure, as well as to evaluate methods for scaling surface energy fluxes for improved model-data comparison. Here we show how fluxes calculated using a spatial eddy covariance technique across the 20-tower network compare to those of standard temporal eddy covariance fluxes in order to characterize of the spatial representativeness of single tower eddy covariance measurements. Additionally, we show how spatial EC fluxes can be used to better understand the energy balance over heterogeneous ecosystems.</p>


2014 ◽  
Vol 41 (22) ◽  
pp. 7875-7881 ◽  
Author(s):  
Shaoqing Liu ◽  
Min Chen ◽  
Qianlai Zhuang

2015 ◽  
Vol 12 (7) ◽  
pp. 6437-6466
Author(s):  
P. Shrestha ◽  
M. Sulis ◽  
C. Simmer ◽  
S. Kollet

Abstract. The hydrological component of the Terrestrial System Modeling Platform (TerrSysMP) which includes integrated surface-groundwater flow, was used to investigate the grid resolution dependence of simulated soil moisture, soil temperature, and surface energy fluxes over a sub-catchment of the Rur, Germany. The investigation was motivated by the recent developments of new earth system models, which include 3-D physically based groundwater models for the coupling of land–atmosphere interaction and subsurface hydrodynamics. Our findings suggest that for grid resolutions between 100 and 1000 m, the non-local controls of soil moisture are highly grid resolution dependent. Local vegetation, however, strongly modulates the scaling behavior especially for surface fluxes and soil temperature, which depends on the radiative transfer property of the canopy. This study also shows that for grid-resolutions above a few 100 m, the variation of spatial and temporal pattern of sensible and latent heat fluxes may significantly affect the resulting atmospheric mesoscale circulation and boundary layer evolution in coupled runs.


2020 ◽  
Vol 584 ◽  
pp. 124669
Author(s):  
Alessandra Trevisan ◽  
Victor Venema ◽  
Stefan Kollet ◽  
Mostaquimur Rahman

Sign in / Sign up

Export Citation Format

Share Document