Building a Young Mountain Range: Insight into the Growth of the Greater Caucasus Mountains from Detrital Zircon (U-Th)/He Thermochronology and 10Be Erosion Rates

2021 ◽  
Author(s):  
Adam Matthew Forte ◽  
Kate R Gutterman ◽  
Matthijs C van Soest ◽  
Kerry Gallagher
2017 ◽  
Author(s):  
Levan G. Tielidze ◽  
Roger D. Wheate ◽  
Stanislav S. Kutuzov ◽  
Kate Doyle ◽  
Ivan I. Lavrentiev

Abstract. Surpaglacial debris cover plays an increasingly important role impacting on glacier ablation, while there have been limited recent studies for the assessment of debris covered glaciers in the Greater Caucasus mountains. We selected 559 glaciers according to the sections and macroslopes in the Greater Caucasus main watershed range and the Elbrus massif to assess supraglacial debris cover (SDC) for the years 1986, 2000 and 2014. Landsat (Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI) and SPOT satellite imagery were analysed to generate glacier outlines using manual and semi-automated methods, along with slope information from a Digital Elevation Model. The study shows there is greater SDC area on the northern than the southern macroslope, and more in the eastern section than the western and central. In 1986-2000-2014, the SDC area increased from 6.4 %-8.2 %-19.4 % on the northern macroslope (apart from the eastern Greater Caucasus section), while on the southern macroslope, SDC increased from 4.0 %-4.9 %-9.2 %. Overall, debris covered glacier numbers increased from 122-143-172 (1986-2000-2014) for 559 selected glaciers. Despite the total glacier area decrease, the SDC glacier area and numbers increased as a function of slope inclination, aspect, glacier morphological type, Little Ice Age (LIA) moraines, rock structure and elevation. The datasets are available for public download at https://doi.pangaea.de/10.1594/PANGAEA.880147.


Tectonics ◽  
2013 ◽  
Vol 32 (3) ◽  
pp. 688-717 ◽  
Author(s):  
Adam M. Forte ◽  
Eric Cowgill ◽  
Ibrahim Murtuzayev ◽  
Talat Kangarli ◽  
Marius Stoica

2020 ◽  
Author(s):  
Gilles Y. Brocard ◽  
Jane K. Willenbring ◽  
Tristan Salles ◽  
Michael Cosca ◽  
Axel Guttiérez-Orrego ◽  
...  

Abstract. The presence of a mountain affects the circulation of water in the atmosphere and over the land surface. These effects are felt over some distance, beyond the extent of the mountain, controlling precipitation delivery and river incision over surrounding landmasses. The rise of a new mountain range therefore affects the erosion of pre-existing mountains located in close proximity. We document here this phenomenon in the mountains of Central Guatemala. The 40Ar-39Ar dating of lava flows shows that two parallel, closely spaced mountain ranges formed during two consecutive pulses of single-stepped uplift, one from 12 to 7 Ma, and the second one since 7 Ma. The distribution of erosion rates derived from the analysis of detrital cosmogenic 10Be in river sediments shows that the younger range erodes faster (~300 m/My) than the older one (20–150 m/My), and that erosion correlates with the amount of precipitation. Moisture tracking form the Caribbean Sea is intercepted by the younger range, which casts a rain shadow over the older one. The analysis of river long-profiles provides a record of longer-term interactions between the two ranges. The rivers that drain the older range were diverted by the younger range during the early stages of its rise. A few rivers were able to maintain their course across the young range, through profile steepening, but incision completely stalled along their upper reaches, upstream of the younger range. As a result, the older range has been passively uplifted, and entered a phase of a slow topographic decay: pediments have formed along its base, while ancient upstream-migrating waves of erosion, located farther up the mountain flanks, have almost stopped migrating. Aridification and cessation of river incision together explain the slowing down of erosion over the older range. They represent top-down and bottom-up processes whereby the younger range controls erosion over the older one. These controls are regarded as instrumental in the nucleation and enlargement of orogenic plateaus forming above continental accretionary wedges.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Margaret L. Haines ◽  
Gordon Luikart ◽  
Stephen J. Amish ◽  
Seth Smith ◽  
Emily K. Latch

Abstract Background Secondary contact between closely related lineages can result in a variety of outcomes, including hybridization, depending upon the strength of reproductive barriers. By examining the extent to which different parts of the genome introgress, it is possible to infer the strength of selection and gain insight into the evolutionary trajectory of lineages. Following secondary contact approximately 8000 years ago in the Pacific Northwest, mule deer (Odocoileus hemionus hemionus) and black-tailed deer (O. h. columbianus) formed a hybrid swarm along the Cascade mountain range despite substantial differences in body size (up to two times) and habitat preference. In this study, we examined genetic population structure, extent of introgression, and selection pressures in freely interbreeding populations of mule deer and black-tailed deer using mitochondrial DNA sequences, 9 microsatellite loci, and 95 SNPs from protein-coding genes. Results We observed bi-directional hybridization and classified approximately one third of the 172 individuals as hybrids, almost all of which were beyond the F1 generation. High genetic differentiation between black-tailed deer and mule deer at protein-coding genes suggests that there is positive divergent selection, though selection on these loci is relatively weak. Contrary to predictions, there was not greater selection on protein-coding genes thought to be associated with immune function and mate choice. Geographic cline analyses were consistent across genetic markers, suggesting long-term stability (over hundreds of generations), and indicated that the center of the hybrid swarm is 20-30 km to the east of the Cascades ridgeline, where there is a steep ecological transition from wet, forested habitat to dry, scrub habitat. Conclusions Our data are consistent with a genetic boundary between mule deer and black-tailed deer that is porous but maintained by many loci under weak selection having a substantial cumulative effect. The absence of clear reproductive barriers and the consistent centering of geographic clines at a sharp ecotone suggests that ecology is a driver of hybrid swarm dynamics. Adaptive introgression in this study (and others) promotes gene flow and provides valuable insight into selection strength on specific genes and the evolutionary trajectory of hybridizing taxa.


Sign in / Sign up

Export Citation Format

Share Document