scholarly journals Top-down and bottom-up controls on mountain-hopping erosion: insights from detrital <sup>10</sup>Be and river profile analysis in Central Guatemala

2020 ◽  
Author(s):  
Gilles Y. Brocard ◽  
Jane K. Willenbring ◽  
Tristan Salles ◽  
Michael Cosca ◽  
Axel Guttiérez-Orrego ◽  
...  

Abstract. The presence of a mountain affects the circulation of water in the atmosphere and over the land surface. These effects are felt over some distance, beyond the extent of the mountain, controlling precipitation delivery and river incision over surrounding landmasses. The rise of a new mountain range therefore affects the erosion of pre-existing mountains located in close proximity. We document here this phenomenon in the mountains of Central Guatemala. The 40Ar-39Ar dating of lava flows shows that two parallel, closely spaced mountain ranges formed during two consecutive pulses of single-stepped uplift, one from 12 to 7 Ma, and the second one since 7 Ma. The distribution of erosion rates derived from the analysis of detrital cosmogenic 10Be in river sediments shows that the younger range erodes faster (~300 m/My) than the older one (20–150 m/My), and that erosion correlates with the amount of precipitation. Moisture tracking form the Caribbean Sea is intercepted by the younger range, which casts a rain shadow over the older one. The analysis of river long-profiles provides a record of longer-term interactions between the two ranges. The rivers that drain the older range were diverted by the younger range during the early stages of its rise. A few rivers were able to maintain their course across the young range, through profile steepening, but incision completely stalled along their upper reaches, upstream of the younger range. As a result, the older range has been passively uplifted, and entered a phase of a slow topographic decay: pediments have formed along its base, while ancient upstream-migrating waves of erosion, located farther up the mountain flanks, have almost stopped migrating. Aridification and cessation of river incision together explain the slowing down of erosion over the older range. They represent top-down and bottom-up processes whereby the younger range controls erosion over the older one. These controls are regarded as instrumental in the nucleation and enlargement of orogenic plateaus forming above continental accretionary wedges.

2021 ◽  
Vol 9 (4) ◽  
pp. 795-822
Author(s):  
Gilles Brocard ◽  
Jane Kathrin Willenbring ◽  
Tristan Salles ◽  
Michael Cosca ◽  
Axel Guttiérez-Orrego ◽  
...  

Abstract. The rise of a mountain range affects moisture circulation in the atmosphere and water runoff across the land surface, modifying the distribution of precipitation and drainage patterns in its vicinity. Water routing in turn affects erosion on hillslopes and incision in river channels on surrounding mountain ranges. In central Guatemala, two parallel, closely spaced mountain ranges formed during two consecutive pulses of uplift, the first between 12 and 7 Ma (Sierra de Chuacús–Sierra de las Minas), and the second after 7 Ma (Altos de Cuchumatanes). We explore the climatic and tectonic processes through which the rise of the most recent range drove the slowing of river incision and hillslope erosion over the previously uplifted range. The 40Ar/39Ar dating of perched volcanic deposits documents the sequential rise and incision of these mountain ranges. Terrestrial cosmogenic 10Be in river sediments indicates that currently hillslopes in the older range erode more slowly than in the younger range (20–150 vs. 300 m Myr−1). These differences mimic the current distribution of precipitation, with the younger range intercepting the atmospheric moisture before it reaches the older range. River channel steepness and deformation of paleovalleys in the new range further indicate that the younger range has been rising faster than the older range up to today. We review how atmospheric moisture interception and river long-profile adjustment to the rise of the new range have contributed to the decline of erosion rates over the old range. We also explore the consequences of this decline and of aridification on the topographic evolution of the older range. The older range undergoes a slow topographic decay, dominated by backwearing, by the stacking of slowly migrating erosion waves along the mountain flanks, and by the formation of pediments around its base. The morphology of the old range is therefore transitioning from that of a front range to that of a dry interior range.


2020 ◽  
Vol 12 (3) ◽  
pp. 1561-1623 ◽  
Author(s):  
Marielle Saunois ◽  
Ann R. Stavert ◽  
Ben Poulter ◽  
Philippe Bousquet ◽  
Josep G. Canadell ◽  
...  

Abstract. Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. Atmospheric emissions and concentrations of CH4 continue to increase, making CH4 the second most important human-influenced greenhouse gas in terms of climate forcing, after carbon dioxide (CO2). The relative importance of CH4 compared to CO2 depends on its shorter atmospheric lifetime, stronger warming potential, and variations in atmospheric growth rate over the past decade, the causes of which are still debated. Two major challenges in reducing uncertainties in the atmospheric growth rate arise from the variety of geographically overlapping CH4 sources and from the destruction of CH4 by short-lived hydroxyl radicals (OH). To address these challenges, we have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. Following Saunois et al. (2016), we present here the second version of the living review paper dedicated to the decadal methane budget, integrating results of top-down studies (atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up estimates (including process-based models for estimating land surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations). For the 2008–2017 decade, global methane emissions are estimated by atmospheric inversions (a top-down approach) to be 576 Tg CH4 yr−1 (range 550–594, corresponding to the minimum and maximum estimates of the model ensemble). Of this total, 359 Tg CH4 yr−1 or ∼ 60 % is attributed to anthropogenic sources, that is emissions caused by direct human activity (i.e. anthropogenic emissions; range 336–376 Tg CH4 yr−1 or 50 %–65 %). The mean annual total emission for the new decade (2008–2017) is 29 Tg CH4 yr−1 larger than our estimate for the previous decade (2000–2009), and 24 Tg CH4 yr−1 larger than the one reported in the previous budget for 2003–2012 (Saunois et al., 2016). Since 2012, global CH4 emissions have been tracking the warmest scenarios assessed by the Intergovernmental Panel on Climate Change. Bottom-up methods suggest almost 30 % larger global emissions (737 Tg CH4 yr−1, range 594–881) than top-down inversion methods. Indeed, bottom-up estimates for natural sources such as natural wetlands, other inland water systems, and geological sources are higher than top-down estimates. The atmospheric constraints on the top-down budget suggest that at least some of these bottom-up emissions are overestimated. The latitudinal distribution of atmospheric observation-based emissions indicates a predominance of tropical emissions (∼ 65 % of the global budget, < 30∘ N) compared to mid-latitudes (∼ 30 %, 30–60∘ N) and high northern latitudes (∼ 4 %, 60–90∘ N). The most important source of uncertainty in the methane budget is attributable to natural emissions, especially those from wetlands and other inland waters. Some of our global source estimates are smaller than those in previously published budgets (Saunois et al., 2016; Kirschke et al., 2013). In particular wetland emissions are about 35 Tg CH4 yr−1 lower due to improved partition wetlands and other inland waters. Emissions from geological sources and wild animals are also found to be smaller by 7 Tg CH4 yr−1 by 8 Tg CH4 yr−1, respectively. However, the overall discrepancy between bottom-up and top-down estimates has been reduced by only 5 % compared to Saunois et al. (2016), due to a higher estimate of emissions from inland waters, highlighting the need for more detailed research on emissions factors. Priorities for improving the methane budget include (i) a global, high-resolution map of water-saturated soils and inundated areas emitting methane based on a robust classification of different types of emitting habitats; (ii) further development of process-based models for inland-water emissions; (iii) intensification of methane observations at local scales (e.g., FLUXNET-CH4 measurements) and urban-scale monitoring to constrain bottom-up land surface models, and at regional scales (surface networks and satellites) to constrain atmospheric inversions; (iv) improvements of transport models and the representation of photochemical sinks in top-down inversions; and (v) development of a 3D variational inversion system using isotopic and/or co-emitted species such as ethane to improve source partitioning. The data presented here can be downloaded from https://doi.org/10.18160/GCP-CH4-2019 (Saunois et al., 2020) and from the Global Carbon Project.


2021 ◽  
Author(s):  
Romano Clementucci ◽  
Paolo Ballato ◽  
Lionel Siame ◽  
Ahmed Yaaqoub ◽  
Abderrahim Essaifi ◽  
...  

&lt;p&gt;Rock erodibility plays a central role in setting topographic limits on relief development and is a key parameter in landscape evolution models. However, channel bed erodibility (K) is usually either fixed arbitrary or let varying over a wide range of values (10&lt;sup&gt;-12&lt;/sup&gt; &amp;#8211; 10&lt;sup&gt;-3&lt;/sup&gt;) because it is difficult to estimate. The topography of ancient orogens offers favourable conditions to quantify bedrock erodibility through the stream profile analysis, because the channel steepness is directly related to rock erodibility rather than rock uplift or climate variability.&lt;/p&gt;&lt;p&gt;The Anti-Atlas is a Variscan (Paleozoic) orogen of NW Africa that has not been drifted for long distances over the late Cenozoic and hence has not experienced an extended shift across climatic zones. Furthermore, it is characterized by a well preserved uplifted relict landscape with rather uniform erosion rates since at least the last 120 - 100 Ma. This specific configuration allows studying in detail landscape erosional dynamics and erodibility.&lt;/p&gt;&lt;p&gt;Here, we combine geomorphic analysis of stream profiles with in situ-produced cosmogenic concentrations (&lt;sup&gt;10&lt;/sup&gt;Be) in river sediments, to decipher the surface evolution of the AntiAtlas and the adjacent Siroua Massif. In the Anti-Atlas, the basin-wide denudation rates determined for the relictal part of the landscape range between 5 and 20 m Ma&lt;sup&gt;-1&lt;/sup&gt;, consistent with rates estimated from the volume of volcanics eroded from the Siroua Massif during the last 12 - 10 Ma (10 to 20 m Ma&lt;sup&gt;-1&lt;/sup&gt;). The close agreement of short- and long-term erosion rates suggests a steady state landscape.&lt;/p&gt;&lt;p&gt;Our results demonstrate the main role of rock-type on sustaining post-orogenic landscape. Specifically, we find a striking correlation between erosion rates and normalized channel steepness per different rock-types. This allows estimating the erodibility within a narrower range of values (10&lt;sup&gt;-7&lt;/sup&gt; - 10&lt;sup&gt;-4&lt;/sup&gt;) as a function of the reference concavity values of the river network.&lt;/p&gt;


2016 ◽  
Vol 8 (2) ◽  
pp. 697-751 ◽  
Author(s):  
Marielle Saunois ◽  
Philippe Bousquet ◽  
Ben Poulter ◽  
Anna Peregon ◽  
Philippe Ciais ◽  
...  

Abstract. The global methane (CH4) budget is becoming an increasingly important component for managing realistic pathways to mitigate climate change. This relevance, due to a shorter atmospheric lifetime and a stronger warming potential than carbon dioxide, is challenged by the still unexplained changes of atmospheric CH4 over the past decade. Emissions and concentrations of CH4 are continuing to increase, making CH4 the second most important human-induced greenhouse gas after carbon dioxide. Two major difficulties in reducing uncertainties come from the large variety of diffusive CH4 sources that overlap geographically, and from the destruction of CH4 by the very short-lived hydroxyl radical (OH). To address these difficulties, we have established a consortium of multi-disciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate research on the methane cycle, and producing regular (∼ biennial) updates of the global methane budget. This consortium includes atmospheric physicists and chemists, biogeochemists of surface and marine emissions, and socio-economists who study anthropogenic emissions. Following Kirschke et al. (2013), we propose here the first version of a living review paper that integrates results of top-down studies (exploiting atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up models, inventories and data-driven approaches (including process-based models for estimating land surface emissions and atmospheric chemistry, and inventories for anthropogenic emissions, data-driven extrapolations). For the 2003–2012 decade, global methane emissions are estimated by top-down inversions at 558 Tg CH4 yr−1, range 540–568. About 60 % of global emissions are anthropogenic (range 50–65 %). Since 2010, the bottom-up global emission inventories have been closer to methane emissions in the most carbon-intensive Representative Concentrations Pathway (RCP8.5) and higher than all other RCP scenarios. Bottom-up approaches suggest larger global emissions (736 Tg CH4 yr−1, range 596–884) mostly because of larger natural emissions from individual sources such as inland waters, natural wetlands and geological sources. Considering the atmospheric constraints on the top-down budget, it is likely that some of the individual emissions reported by the bottom-up approaches are overestimated, leading to too large global emissions. Latitudinal data from top-down emissions indicate a predominance of tropical emissions (∼ 64 % of the global budget, < 30° N) as compared to mid (∼ 32 %, 30–60° N) and high northern latitudes (∼ 4 %, 60–90° N). Top-down inversions consistently infer lower emissions in China (∼ 58 Tg CH4 yr−1, range 51–72, −14 %) and higher emissions in Africa (86 Tg CH4 yr−1, range 73–108, +19 %) than bottom-up values used as prior estimates. Overall, uncertainties for anthropogenic emissions appear smaller than those from natural sources, and the uncertainties on source categories appear larger for top-down inversions than for bottom-up inventories and models. The most important source of uncertainty on the methane budget is attributable to emissions from wetland and other inland waters. We show that the wetland extent could contribute 30–40 % on the estimated range for wetland emissions. Other priorities for improving the methane budget include the following: (i) the development of process-based models for inland-water emissions, (ii) the intensification of methane observations at local scale (flux measurements) to constrain bottom-up land surface models, and at regional scale (surface networks and satellites) to constrain top-down inversions, (iii) improvements in the estimation of atmospheric loss by OH, and (iv) improvements of the transport models integrated in top-down inversions. The data presented here can be downloaded from the Carbon Dioxide Information Analysis Center (http://doi.org/10.3334/CDIAC/GLOBAL_METHANE_BUDGET_2016_V1.1) and the Global Carbon Project.


2019 ◽  
Author(s):  
Marielle Saunois ◽  
Ann R. Stavert ◽  
Ben Poulter ◽  
Philippe Bousquet ◽  
Joseph G. Canadell ◽  
...  

Abstract. Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. Atmospheric emissions and concentrations of CH4 are continuing to increase, making CH4 the second most important human-influenced greenhouse gas in terms of climate forcing, after carbon dioxide (CO2). Assessing the relative importance of CH4 in comparison to CO2 is complicated by its shorter atmospheric lifetime, stronger warming potential, and atmospheric growth rate variations over the past decade, the causes of which are still debated. Two major difficulties in reducing uncertainties arise from the variety of geographically overlapping CH4 sources and from the destruction of CH4 by short-lived hydroxyl radicals (OH). To address these difficulties, we have established a consortium of multi-disciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. Following Saunois et al. (2016), we present here the second version of the living review paper dedicated to the decadal methane budget, integrating results of top-down studies (atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up estimates (including process-based models for estimating land surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations). For the 2008–2017 decade, global methane emissions are estimated by atmospheric inversions (top-down approach) to be 572 Tg CH4 yr−1 (range 538–593, corresponding to the minimum and maximum estimates of the ensemble), of which 357 Tg CH4 yr−1 or ~ 60 % are attributed to anthropogenic sources (range 50–65 %). This total emission is 27 Tg CH4 yr−1 larger than the value estimated for the period 2000–2009 and 24 Tg CH4 yr−1 larger than the one reported in the previous budget for the period 2003–2012 (Saunois et al. 2016). Since 2012, global CH4 emissions have been tracking the carbon intensive scenarios developed by the Intergovernmental Panel on Climate Change (Gidden et al., 2019). Bottom-up methods suggest larger global emissions (737 Tg CH4 yr−1, range 583–880) than top-down inversion methods, mostly because of larger estimated natural emissions from sources such as natural wetlands, other inland water systems, and geological sources. However the strength of the atmospheric constraints on the top-down budget, suggest that these bottom-up emissions are overestimated. The latitudinal distribution of atmospheric-based emissions indicates a predominance of tropical emissions (~ 65 % of the global budget,


PsycCRITIQUES ◽  
2005 ◽  
Vol 50 (19) ◽  
Author(s):  
Michael Cole
Keyword(s):  
Top Down ◽  

Sign in / Sign up

Export Citation Format

Share Document