scholarly journals Intertwined eco-morphodynamic evolution of salt marshes and tidal channels cutting through them

2021 ◽  
Author(s):  
Liang Geng ◽  
Andrea D'Alpaos ◽  
Alessandro Sgarabotto ◽  
Zheng Gong ◽  
Stefano Lanzoni
2011 ◽  
Vol 31 (6) ◽  
pp. 611-630 ◽  
Author(s):  
Sébastien Détriché ◽  
Anne-Sophie Susperregui ◽  
Eric Feunteun ◽  
Jean-Claude Lefeuvre ◽  
Alain Jigorel

2018 ◽  
Vol 97 (3) ◽  
pp. 69-70
Author(s):  
Ad J.F. van der Spek ◽  
Niels van den Berg

The Wadden Sea region spans a distance of nearly 500km along the North Sea coast from the Netherlands to Denmark. It consists of a chain of barrier islands which shelter an area of extensive intertidal flats and salt marshes that are dissected by tidal channels and creeks. Moreover, several estuaries are part of this area which is known for its intriguing morphodynamics. The natural process of continuous erosion, transport and deposition of sediment shapes the morphology of the area, which has a high ecological value, especially the intertidal morphology that supports a wide range of wildlife.


Author(s):  
Liang Geng ◽  
Andrea D’Alpaos ◽  
Alessandro Sgarabotto ◽  
Zheng Gong ◽  
Stefano Lanzoni

2014 ◽  
Vol 38 (6) ◽  
pp. 691-715 ◽  
Author(s):  
Mark Schuerch ◽  
Tobias Dolch ◽  
Karsten Reise ◽  
Athanasios T. Vafeidis

Salt marshes in the Wadden Sea constitute about 20% of all salt marshes along European coasts. They are of immense importance for coastal protection reasons and as habitat for coastal plant, bird, and invertebrate species. The Wadden Sea is a coastal sedimentary ecosystem in the southeastern North Sea. Besides salt marshes, it is composed of tidal flats, high sands, and sandy shoals, dissected by (sub)tidal channels and located behind barrier islands. Accelerated global sea-level rise (SLR) and changes in storm climate have been identified as possible threats for the persistence of the Wadden Sea ecosystem including its salt marshes. Moreover, it is known that the amount and composition of the sediment available for salt marshes are the most important parameters influencing their ability to adapt to current and future SLR. Assessing these parameters requires a thorough understanding of the sedimentary system of the salt marshes and the adjacent tidal basins. In the present review, we investigate and unravel the interactions of sedimentary processes in the Wadden Sea with the processes taking place on the salt marshes. We identify the most crucial processes and interactions influencing the morphological development of salt marshes in the Wadden Sea. A conceptual model is proposed, intended as a framework for improved understanding of salt marsh development and for incorporation into new salt marsh models. The proposed model may also be applicable to regions other than the Wadden Sea.


2020 ◽  
Vol 8 (5) ◽  
pp. 364 ◽  
Author(s):  
Daniele Pinton ◽  
Alberto Canestrelli ◽  
Luca Fantuzzi

An accurate description of hydrodynamic processes in coastal wetlands is needed to improve their management and conservation. As a consequence, higher knowledge of the connected morphological and ecologic processes is achievable. However, it is very costly to collect spatially distributed values of flow velocities over tidal channels and intertidal areas by means of in situ sensors. Also, when deploying sensors, humans perturb the ecosystem, which takes time to recover. In this study, a new low-cost unmanned aerial vehicle (UAV)-based method to measure surface velocities is proposed and validated. The study area is a salt marsh system on the southeast coast of Little Sapelo Island, Georgia, USA. Two unmanned aerial vehicles were used in the survey. A first UAV released a fluorescent dye tracer on marshes and tidal creeks, while a second one tracked its movement by collecting RGB images. Flow direction and magnitude were calculated from the images using a newly developed algorithm. A comparison with velocities measured with an acoustic Doppler current profiler confirmed the effectiveness of the method. Our results indicate that the calculated flow field is affected by vegetation, marsh morphology, and marsh width. In particular, a non-negligible velocity component perpendicular to the creek axes is detected both in ebb and in flood. Our technique proves to be an effective, non-intrusive, low-cost way to survey the two-dimensional hydrodynamics on salt marsh environments at a km scale. Collected data would be beneficial for calibrating and validating numerical models with accurate water flux information.


Sign in / Sign up

Export Citation Format

Share Document