scholarly journals A UAV-Based Dye-Tracking Technique to Measure Surface Velocities over Tidal Channels and Salt Marshes

2020 ◽  
Vol 8 (5) ◽  
pp. 364 ◽  
Author(s):  
Daniele Pinton ◽  
Alberto Canestrelli ◽  
Luca Fantuzzi

An accurate description of hydrodynamic processes in coastal wetlands is needed to improve their management and conservation. As a consequence, higher knowledge of the connected morphological and ecologic processes is achievable. However, it is very costly to collect spatially distributed values of flow velocities over tidal channels and intertidal areas by means of in situ sensors. Also, when deploying sensors, humans perturb the ecosystem, which takes time to recover. In this study, a new low-cost unmanned aerial vehicle (UAV)-based method to measure surface velocities is proposed and validated. The study area is a salt marsh system on the southeast coast of Little Sapelo Island, Georgia, USA. Two unmanned aerial vehicles were used in the survey. A first UAV released a fluorescent dye tracer on marshes and tidal creeks, while a second one tracked its movement by collecting RGB images. Flow direction and magnitude were calculated from the images using a newly developed algorithm. A comparison with velocities measured with an acoustic Doppler current profiler confirmed the effectiveness of the method. Our results indicate that the calculated flow field is affected by vegetation, marsh morphology, and marsh width. In particular, a non-negligible velocity component perpendicular to the creek axes is detected both in ebb and in flood. Our technique proves to be an effective, non-intrusive, low-cost way to survey the two-dimensional hydrodynamics on salt marsh environments at a km scale. Collected data would be beneficial for calibrating and validating numerical models with accurate water flux information.

2020 ◽  
Author(s):  
Nicoletta Leonardi ◽  
Carmine Donatelli ◽  
Xiahoe Zhang ◽  
Neil Ganju ◽  
Sergio Fagherazzi

<p>Salt marshes and seagrass beds can offer sustainable coastal protection solutions and several ecosystem co-benefits. The delicate balance regulating salt marsh stability depends on several factors including the sediment added to and removed from the coastal system (<em>Donatelli et al., 2018, 2019; Zhang et al., 2019</em>).  Despite the importance of these sediment budget dynamics, many feedbacks between salt marsh presence and sediment availability are still unclear. Here, we use numerical models to simulate changes in depositional patterns of six estuaries along the U.S. coastline to investigate how salt marsh and seagrass beds removal and restoration can alter the sediment budget and resilience of coastal environments. </p><p><em>Donatelli, C., Ganju, N.K., Kalra, T.S., Fagherazzi, S. and Leonardi, N., 2019. Changes in hydrodynamics and wave energy as a result of seagrass decline along the shoreline of a microtidal back-barrier estuary. Advances in Water Resources, 128, pp.183-192.</em></p><p><em>Zhang, X., Leonardi, N., Donatelli, C. and Fagherazzi, S., 2019. Fate of cohesive sediments in a marsh-dominated estuary. Advances in water resources, 125, pp.32-40.</em></p><p><em>Donatelli, C., Ganju, N.K., Fagherazzi, S. and Leonardi, N., 2018. Seagrass impact on sediment exchange between tidal flats and salt marsh, and the sediment budget of shallow bays. Geophysical Research Letters, 45(10), pp.4933-4943.</em></p>


2013 ◽  
Vol 43 (8) ◽  
pp. 1691-1709 ◽  
Author(s):  
Ekaterina V. Maksimova ◽  
Allan J. Clarke

Abstract Multiyear in situ Eulerian acoustic Doppler current profiler measurements were obtained at 5-, 10-, and 19-m depths off the Big Bend coast, and in 19 m off the Florida Peninsula to the south. Analysis on subinertial time scales, dominated by weatherband frequencies, led to the following conclusions. At the 19-m Big Bend site (K-Tower), consistent with coastally trapped wave (CTW) theory, the along-isobath flow is not proportional to the local along-isobath wind stress, but rather to the alongshore wind stress to the south along the west Florida shelf (WFS). At the southern 19-m site, consistent with previous work, the along-isobath flow is driven by , but is weakened by an alongshore pressure gradient brake. Via CTW dynamics this brake is due to the abrupt “end” of the WFS at the Florida Keys. By contrast, along-isobath flow at the shallow 5-m site is driven by the local wind in a constant stress turbulent frictional layer. Because of the freshwater flux near the coast, density usually increases seaward. This leads to a strong asymmetry in the cross-isobath frictional bottom boundary layer (BBL) flow when the subinertial along-isobath flow direction changes. In one case the BBL flow is shoreward and gravitationally stable while, in the other, the BBL flow is gravitationally unstable as less dense water is forced under more dense water. Seasonal changes in the seaward horizontal density gradient also shear the seasonal along-isobath flow via thermal wind dynamics.


Author(s):  
Luca Centurioni ◽  
Lance Braasch ◽  
Enrico Di Lauro ◽  
Pasquale Contestabile ◽  
Francesco De Leo ◽  
...  

The accuracy of directional wave spectra sensors is crucial for obtaining accurate forecasts of ocean and coastal wave conditions for scientific and engineering applications. In this paper, a newly designed, low-cost GPS-based wave buoy, called the Directional Wave Spectra Drifter (DWSD), is presented. A field test campaign was conducted at the Gulf of Naples, Italy with the goal of comparing the directional wave properties obtained with the DWSD and with a nearly co-located bottom-mounted Acoustic Doppler Current Profiler (ADCP) from Teledyne RD-Instruments. The comparison shows a very good agreement between the two methodologies. The reliability of this innovative instrument and its low costs allow a large variety of applications, including the implementation of a global, satellite-linked, real-time open-ocean network of drifting directional wave spectra sensors and monitoring the sea-state in harbors to aid ship transit and for planning coastal and offshore constructions. The DWSD is currently in use to better constrain the wave energy climatology with the goal of optimizing the design of a full-scale prototype Wave Energy Converter (WEC) in the port of Naples, Italy.


2017 ◽  
Author(s):  
Guillaume C. H. Goodwin ◽  
Simon M. Mudd ◽  
Fiona J. Clubb

Abstract. Salt marshes filter pollutants, protect coastlines against storm surges, and sequester carbon, yet are under threat from sea level rise and anthropogenic modification. The productivity and even survival of salt marsh vegetation depends on the topographic evolution of marsh platforms. Quantifying marsh platform topography is vital for improving the management of these valuable landscapes. Determining platform boundaries currently relies on supervised classification methods requiring near-infrared data to detect vegetation, or demands labor-intensive field surveys and digitization. We propose a novel, unsupervised method to reproducibly isolate saltmarsh scarps and platforms from a DEM, referred to as Topographic Identification of Platforms (TIP). Field observations and numerical models show that saltmarshes mature into sub-horizontal platforms delineated by sub-vertical scarps: based on this premise, we identify scarps as lines of local maxima on a slope raster, then fill landmasses from the scarps upward, thus isolating mature marsh platforms. We test the TIP method using lidar-derived DEMs from six saltmarshes in England with varying tidal ranges and geometries, for which topographic platforms were manually distinguished from tidal flats. Agreement between manual and unsupervised classification exceeds 94 % for DEM resolutions of 1 m, with all but one sites maintaining an accuracy superior to 90 % for resolutions up to 3 m. For resolutions of 1 m, platforms detected with the TIP method are comparable in surface area to digitized platforms, and have similar elevation distributions. We also find that our method allows the accurate detection of local bloc failures as small as 3 times the DEM resolution. Detailed inspection reveals that although tidal creeks were digitized as part of the marsh platform, unsupervised classification categorizes them as part of the tidal flat, causing an increase in false negatives and overall platform perimeter. This suggests our method would have increased accuracy if used in combination with existing creek detection algorithms. Fallen blocs and high tidal flat portions, associated with potential pioneer zones, may also be areas of discordance between our method and supervised mapping. Although pioneer zones prove difficult to classify using a topographic method, it also suggests that these transition areas should be considered when analysing erosion and accretion processes, particularly in the case of incipient marsh platforms. Ultimately, we have shown that unsupervised classification of marsh platforms from high-resolution topography is possible and sufficient to monitor and analyze topographic evolution.


2018 ◽  
Vol 6 (1) ◽  
pp. 239-255 ◽  
Author(s):  
Guillaume C. H. Goodwin ◽  
Simon M. Mudd ◽  
Fiona J. Clubb

Abstract. Salt marshes filter pollutants, protect coastlines against storm surges, and sequester carbon, yet are under threat from sea level rise and anthropogenic modification. The sustained existence of the salt marsh ecosystem depends on the topographic evolution of marsh platforms. Quantifying marsh platform topography is vital for improving the management of these valuable landscapes. The determination of platform boundaries currently relies on supervised classification methods requiring near-infrared data to detect vegetation, or demands labour-intensive field surveys and digitisation. We propose a novel, unsupervised method to reproducibly isolate salt marsh scarps and platforms from a digital elevation model (DEM), referred to as Topographic Identification of Platforms (TIP). Field observations and numerical models show that salt marshes mature into subhorizontal platforms delineated by subvertical scarps. Based on this premise, we identify scarps as lines of local maxima on a slope raster, then fill landmasses from the scarps upward, thus isolating mature marsh platforms. We test the TIP method using lidar-derived DEMs from six salt marshes in England with varying tidal ranges and geometries, for which topographic platforms were manually isolated from tidal flats. Agreement between manual and unsupervised classification exceeds 94 % for DEM resolutions of 1 m, with all but one site maintaining an accuracy superior to 90 % for resolutions up to 3 m. For resolutions of 1 m, platforms detected with the TIP method are comparable in surface area to digitised platforms and have similar elevation distributions. We also find that our method allows for the accurate detection of local block failures as small as 3 times the DEM resolution. Detailed inspection reveals that although tidal creeks were digitised as part of the marsh platform, unsupervised classification categorises them as part of the tidal flat, causing an increase in false negatives and overall platform perimeter. This suggests our method may benefit from combination with existing creek detection algorithms. Fallen blocks and high tidal flat portions, associated with potential pioneer zones, can also lead to differences between our method and supervised mapping. Although pioneer zones prove difficult to classify using a topographic method, we suggest that these transition areas should be considered when analysing erosion and accretion processes, particularly in the case of incipient marsh platforms. Ultimately, we have shown that unsupervised classification of marsh platforms from high-resolution topography is possible and sufficient to monitor and analyse topographic evolution.


2014 ◽  
Vol 38 (6) ◽  
pp. 691-715 ◽  
Author(s):  
Mark Schuerch ◽  
Tobias Dolch ◽  
Karsten Reise ◽  
Athanasios T. Vafeidis

Salt marshes in the Wadden Sea constitute about 20% of all salt marshes along European coasts. They are of immense importance for coastal protection reasons and as habitat for coastal plant, bird, and invertebrate species. The Wadden Sea is a coastal sedimentary ecosystem in the southeastern North Sea. Besides salt marshes, it is composed of tidal flats, high sands, and sandy shoals, dissected by (sub)tidal channels and located behind barrier islands. Accelerated global sea-level rise (SLR) and changes in storm climate have been identified as possible threats for the persistence of the Wadden Sea ecosystem including its salt marshes. Moreover, it is known that the amount and composition of the sediment available for salt marshes are the most important parameters influencing their ability to adapt to current and future SLR. Assessing these parameters requires a thorough understanding of the sedimentary system of the salt marshes and the adjacent tidal basins. In the present review, we investigate and unravel the interactions of sedimentary processes in the Wadden Sea with the processes taking place on the salt marshes. We identify the most crucial processes and interactions influencing the morphological development of salt marshes in the Wadden Sea. A conceptual model is proposed, intended as a framework for improved understanding of salt marsh development and for incorporation into new salt marsh models. The proposed model may also be applicable to regions other than the Wadden Sea.


2020 ◽  
Vol 645 ◽  
pp. 187-204
Author(s):  
PJ Rudershausen ◽  
JA Buckel

It is unclear how urbanization affects secondary biological production in estuaries in the southeastern USA. We estimated production of larval/juvenile Fundulus heteroclitus in salt marsh areas of North Carolina tidal creeks and tested for factors influencing production. F. heteroclitus were collected with a throw trap in salt marshes of 5 creeks subjected to a range of urbanization intensities. Multiple factor analysis (MFA) was used to reduce dimensionality of habitat and urbanization effects in the creeks and their watersheds. Production was then related to the first 2 dimensions of the MFA, month, and year. Lastly, we determined the relationship between creek-wide larval/juvenile production and abundance from spring and abundance of adults from autumn of the same year. Production in marsh (g m-2 d-1) varied between years and was negatively related to the MFA dimension that indexed salt marsh; higher rates of production were related to creeks with higher percentages of marsh. An asymptotic relationship was found between abundance of adults and creek-wide production of larvae/juveniles and an even stronger density-dependent relationship was found between abundance of adults and creek-wide larval/juvenile abundance. Results demonstrate (1) the ability of F. heteroclitus to maintain production within salt marsh in creeks with a lesser percentage of marsh as long as this habitat is not removed altogether and (2) a density-dependent link between age-0 production/abundance and subsequent adult recruitment. Given the relationship between production and marsh area, natural resource agencies should consider impacts of development on production when permitting construction in the southeastern USA.


Sign in / Sign up

Export Citation Format

Share Document