scholarly journals Unravelling interactions between salt marsh evolution and sedimentary processes in the Wadden Sea (southeastern North Sea)

2014 ◽  
Vol 38 (6) ◽  
pp. 691-715 ◽  
Author(s):  
Mark Schuerch ◽  
Tobias Dolch ◽  
Karsten Reise ◽  
Athanasios T. Vafeidis

Salt marshes in the Wadden Sea constitute about 20% of all salt marshes along European coasts. They are of immense importance for coastal protection reasons and as habitat for coastal plant, bird, and invertebrate species. The Wadden Sea is a coastal sedimentary ecosystem in the southeastern North Sea. Besides salt marshes, it is composed of tidal flats, high sands, and sandy shoals, dissected by (sub)tidal channels and located behind barrier islands. Accelerated global sea-level rise (SLR) and changes in storm climate have been identified as possible threats for the persistence of the Wadden Sea ecosystem including its salt marshes. Moreover, it is known that the amount and composition of the sediment available for salt marshes are the most important parameters influencing their ability to adapt to current and future SLR. Assessing these parameters requires a thorough understanding of the sedimentary system of the salt marshes and the adjacent tidal basins. In the present review, we investigate and unravel the interactions of sedimentary processes in the Wadden Sea with the processes taking place on the salt marshes. We identify the most crucial processes and interactions influencing the morphological development of salt marshes in the Wadden Sea. A conceptual model is proposed, intended as a framework for improved understanding of salt marsh development and for incorporation into new salt marsh models. The proposed model may also be applicable to regions other than the Wadden Sea.

Author(s):  
Thomas J van Veelen ◽  
Harshinie Karunarathna ◽  
William G Bennett ◽  
Tom P Fairchild ◽  
Dominic E Reeve

The ability of coastal vegetation to attenuate waves has been well established (Moller et al., 2014). Salt marshes are vegetated coastal wetlands that can act as nature- based coastal defenses. They exhibit a range of plant species, which have been shown to differ in the amount of wave damping they provide (Mullarney & Henderson, 2018). Recent studies have shown that plant flexibility is a key parameter that controls wave energy dissipation (Paul et al., 2016). Yet, no model exists that includes plant flexibility in computationally efficient manner for large-scale coastal zones. Therefore, we have developed a new model for flexible vegetation based on the key mechanisms in the wave-vegetation interaction and applied it to an estuary with diverse salt marsh vegetation.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/AjnFx3aFSzs


Drones ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 25
Author(s):  
Antoine Mury ◽  
Antoine Collin ◽  
Thomas Houet ◽  
Emilien Alvarez-Vanhard ◽  
Dorothée James

Offering remarkable biodiversity, coastal salt marshes also provide a wide variety of ecosystem services: cultural services (leisure, tourist amenities), supply services (crop production, pastoralism) and regulation services including carbon sequestration and natural protection against coastal erosion and inundation. The consideration of this coastal protection ecosystem service takes part in a renewed vision of coastal risk management and especially marine flooding, with an emerging focus on “nature-based solutions.” Through this work, using remote-sensing methods, we propose a novel drone-based spatial modeling methodology of the salt marsh hydrodynamic attenuation at very high spatial resolution (VHSR). This indirect modeling is based on in situ measurements of significant wave heights (Hm0) that constitute the ground truth, as well as spectral and topographical predictors from VHSR multispectral drone imagery. By using simple and multiple linear regressions, we identify the contribution of predictors, taken individually, and jointly. The best individual drone-based predictor is the green waveband. Dealing with the addition of individual predictors to the red-green-blue (RGB) model, the highest gain is observed with the red edge waveband, followed by the near-infrared, then the digital surface model. The best full combination is the RGB enhanced by the red edge and the normalized difference vegetation index (coefficient of determination (R2): 0.85, root mean square error (RMSE): 0.20%/m).


2020 ◽  
Author(s):  
Nicoletta Leonardi ◽  
Carmine Donatelli ◽  
Xiahoe Zhang ◽  
Neil Ganju ◽  
Sergio Fagherazzi

<p>Salt marshes and seagrass beds can offer sustainable coastal protection solutions and several ecosystem co-benefits. The delicate balance regulating salt marsh stability depends on several factors including the sediment added to and removed from the coastal system (<em>Donatelli et al., 2018, 2019; Zhang et al., 2019</em>).  Despite the importance of these sediment budget dynamics, many feedbacks between salt marsh presence and sediment availability are still unclear. Here, we use numerical models to simulate changes in depositional patterns of six estuaries along the U.S. coastline to investigate how salt marsh and seagrass beds removal and restoration can alter the sediment budget and resilience of coastal environments. </p><p><em>Donatelli, C., Ganju, N.K., Kalra, T.S., Fagherazzi, S. and Leonardi, N., 2019. Changes in hydrodynamics and wave energy as a result of seagrass decline along the shoreline of a microtidal back-barrier estuary. Advances in Water Resources, 128, pp.183-192.</em></p><p><em>Zhang, X., Leonardi, N., Donatelli, C. and Fagherazzi, S., 2019. Fate of cohesive sediments in a marsh-dominated estuary. Advances in water resources, 125, pp.32-40.</em></p><p><em>Donatelli, C., Ganju, N.K., Fagherazzi, S. and Leonardi, N., 2018. Seagrass impact on sediment exchange between tidal flats and salt marsh, and the sediment budget of shallow bays. Geophysical Research Letters, 45(10), pp.4933-4943.</em></p>


2018 ◽  
Vol 97 (3) ◽  
pp. 69-70
Author(s):  
Ad J.F. van der Spek ◽  
Niels van den Berg

The Wadden Sea region spans a distance of nearly 500km along the North Sea coast from the Netherlands to Denmark. It consists of a chain of barrier islands which shelter an area of extensive intertidal flats and salt marshes that are dissected by tidal channels and creeks. Moreover, several estuaries are part of this area which is known for its intriguing morphodynamics. The natural process of continuous erosion, transport and deposition of sediment shapes the morphology of the area, which has a high ecological value, especially the intertidal morphology that supports a wide range of wildlife.


2011 ◽  
Vol 1 (32) ◽  
pp. 2 ◽  
Author(s):  
Ralf Kaiser ◽  
Heiko Knaack ◽  
Marco Miani ◽  
Hanz Dieter Niemeyer

Climate change adaptation strategies for coastal protection are examined with the help of mathematical models in the Ems/Dollart Estuary in consideration of different climate scenarios. The Ems Dollart Estuary is located at the Dutch German border in the southern North Sea, a coastal area which has suffered from enormous land losses due to medieval storm surges. Since then the medieval retreat was partly reduced by successive land reclamation following the development of salt marshes.


Diversity ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 680
Author(s):  
Janine B. Adams ◽  
Jacqueline L. Raw ◽  
Taryn Riddin ◽  
Johan Wasserman ◽  
Lara Van Niekerk

Restoration of salt marsh is urgent, as these ecosystems provide natural coastal protection from sea-level rise impacts, contribute towards climate change mitigation, and provide multiple ecosystem services including supporting livelihoods. This study identified potential restoration sites for intervention where agricultural and degraded land could be returned to salt marsh at a national scale in South African estuaries. Overall, successful restoration of salt marsh in some estuaries will require addressing additional pressures such as freshwater inflow reduction and deterioration of water quality. Here, we present, a socio-ecological systems framework for salt marsh restoration that links salt marsh state and the well-being of people to guide meaningful and implementable management and restoration interventions. The framework is applied to a case study at the Swartkops Estuary where the primary restoration intervention intends to route stormwater run-off to abandoned salt works to re-create aquatic habitat for waterbirds, enhance carbon storage, and provide nutrient filtration. As the framework is generalized, while still allowing for site-specific pressures to be captured, there is potential for it to be applied at the national scale, with the largest degraded salt marsh areas set as priorities for such an initiative. It is estimated that ~1970 ha of salt marsh can be restored in this way, and this represents a 14% increase in the habitat cover for the country. Innovative approaches to restoring and improving condition are necessary for conserving salt marshes and the benefits they provide to society.


2018 ◽  
Vol 97 (3) ◽  
pp. 183-214 ◽  
Author(s):  
Zheng Bing Wang ◽  
Edwin P.L. Elias ◽  
Ad J.F. van der Spek ◽  
Quirijn J. Lodder

AbstractThe Wadden Sea is a unique coastal wetland containing an uninterrupted stretch of tidal flats that span a distance of nearly 500km along the North Sea coast from the Netherlands to Denmark. The development of this system is under pressure of climate change and especially the associated acceleration in sea-level rise (SLR). Sustainable management of the system to ensure safety against flooding of the hinterland, to protect the environmental value and to optimise the economic activities in the area requires predictions of the future morphological development.The Dutch Wadden Sea has been accreting by importing sediment from the ebb-tidal deltas and the North Sea coasts of the barrier islands. The average accretion rate since 1926 has been higher than that of the local relative SLR. The large sediment imports are predominantly caused by the damming of the Zuiderzee and Lauwerszee rather than due to response to this rise in sea level. The intertidal flats in all tidal basins increased in height to compensate for SLR.The barrier islands, the ebb-tidal deltas and the tidal basins that comprise tidal channels and flats together form a sediment-sharing system. The residual sediment transport between a tidal basin and its ebb-tidal delta through the tidal inlet is influenced by different processes and mechanisms. In the Dutch Wadden Sea, residual flow, tidal asymmetry and dispersion are dominant. The interaction between tidal channels and tidal flats is governed by both tides and waves. The height of the tidal flats is the result of the balance between sand supply by the tide and resuspension by waves.At present, long-term modelling for evaluating the effects of accelerated SLR mainly relies on aggregated models. These models are used to evaluate the maximum rates of sediment import into the tidal basins in the Dutch Wadden Sea. These maximum rates are compared to the combined scenarios of SLR and extraction-induced subsidence, in order to explore the future state of the Dutch Wadden Sea.For the near future, up to 2030, the effect of accelerated SLR will be limited and hardly noticeable. Over the long term, by the year 2100, the effect depends on the SLR scenarios. According to the low-end scenario, there will be hardly any effect due to SLR until 2100, whereas according to the high-end scenario the effect will be noticeable already in 2050.


2020 ◽  
Vol 8 (5) ◽  
pp. 326
Author(s):  
Rutger W. A. Siemes ◽  
Bas W. Borsje ◽  
Roy J. Daggenvoorde ◽  
Suzanne J. M. H. Hulscher

Salt marshes are increasingly recognized as resilient and sustainable supplements to traditional engineering structures for protecting coasts against flooding. Nevertheless, many salt marshes face severe erosion. There is a consensus that providing structures that create sheltered conditions from high energetic conditions can improve the potential for salt marsh growth. However, little proof is provided on the explicit influence of structures to promote salt marsh growth. This paper investigates how artificial structures can be used to steer the morphological development of salt marshes. A morphological model (Delft3D Flexible Mesh) was applied, which enabled the analysis of various artificial structures with realistic representation. A salt marsh in the Wadden Sea which has seen heavy erosion (lateral retreat rate of 0.9 m/year) served as case study. We simulate both daily and storm conditions. Hereby, vegetation is represented by an increased bed roughness. The model is able to simulate the governing processes of salt marsh development. Results show that, without artificial structures, erosion of the salt marsh and tidal flat continues. With structures implemented, results indicate that there is potential for salt marsh growth in the study area. Moreover, traditional structures, which were widely implemented in the past, proved to be most effective to stimulate marsh growth. More broadly, the paper indicates how morphological development of a salt marsh can be steered by various configurations of artificial structures.


Sign in / Sign up

Export Citation Format

Share Document