scholarly journals Expansion of Phragmites australis in a Mississippi Estuary Determined from Aerial Image Data

2021 ◽  
Author(s):  
Margaret Waldron ◽  
Gregory Carter ◽  
Carlton Anderson
2019 ◽  
Vol 11 (10) ◽  
pp. 1157 ◽  
Author(s):  
Jorge Fuentes-Pacheco ◽  
Juan Torres-Olivares ◽  
Edgar Roman-Rangel ◽  
Salvador Cervantes ◽  
Porfirio Juarez-Lopez ◽  
...  

Crop segmentation is an important task in Precision Agriculture, where the use of aerial robots with an on-board camera has contributed to the development of new solution alternatives. We address the problem of fig plant segmentation in top-view RGB (Red-Green-Blue) images of a crop grown under open-field difficult circumstances of complex lighting conditions and non-ideal crop maintenance practices defined by local farmers. We present a Convolutional Neural Network (CNN) with an encoder-decoder architecture that classifies each pixel as crop or non-crop using only raw colour images as input. Our approach achieves a mean accuracy of 93.85% despite the complexity of the background and a highly variable visual appearance of the leaves. We make available our CNN code to the research community, as well as the aerial image data set and a hand-made ground truth segmentation with pixel precision to facilitate the comparison among different algorithms.


2021 ◽  
Vol 13 (14) ◽  
pp. 2656
Author(s):  
Furong Shi ◽  
Tong Zhang

Deep-learning technologies, especially convolutional neural networks (CNNs), have achieved great success in building extraction from areal images. However, shape details are often lost during the down-sampling process, which results in discontinuous segmentation or inaccurate segmentation boundary. In order to compensate for the loss of shape information, two shape-related auxiliary tasks (i.e., boundary prediction and distance estimation) were jointly learned with building segmentation task in our proposed network. Meanwhile, two consistency constraint losses were designed based on the multi-task network to exploit the duality between the mask prediction and two shape-related information predictions. Specifically, an atrous spatial pyramid pooling (ASPP) module was appended to the top of the encoder of a U-shaped network to obtain multi-scale features. Based on the multi-scale features, one regression loss and two classification losses were used for predicting the distance-transform map, segmentation, and boundary. Two inter-task consistency-loss functions were constructed to ensure the consistency between distance maps and masks, and the consistency between masks and boundary maps. Experimental results on three public aerial image data sets showed that our method achieved superior performance over the recent state-of-the-art models.


2015 ◽  
Vol 35 (5) ◽  
pp. 0528001
Author(s):  
何培培 He Peipei ◽  
万幼川 Wan Youchuan ◽  
杨威 Yang Wei ◽  
秦家鑫 Qin Jiaxin

2019 ◽  
Vol 8 (1) ◽  
pp. 47 ◽  
Author(s):  
Franz Kurz ◽  
Seyed Azimi ◽  
Chun-Yu Sheu ◽  
Pablo d’Angelo

The 3D information of road infrastructures is growing in importance with the development of autonomous driving. In this context, the exact 2D position of road markings as well as height information play an important role in, e.g., lane-accurate self-localization of autonomous vehicles. In this paper, the overall task is divided into an automatic segmentation followed by a refined 3D reconstruction. For the segmentation task, we applied a wavelet-enhanced fully convolutional network on multiview high-resolution aerial imagery. Based on the resulting 2D segments in the original images, we propose a successive workflow for the 3D reconstruction of road markings based on a least-squares line-fitting in multiview imagery. The 3D reconstruction exploits the line character of road markings with the aim to optimize the best 3D line location by minimizing the distance from its back projection to the detected 2D line in all the covering images. Results showed an improved IoU of the automatic road marking segmentation by exploiting the multiview character of the aerial images and a more accurate 3D reconstruction of the road surface compared to the semiglobal matching (SGM) algorithm. Further, the approach avoids the matching problem in non-textured image parts and is not limited to lines of finite length. In this paper, the approach is presented and validated on several aerial image data sets covering different scenarios like motorways and urban regions.


2019 ◽  
Vol 59 (5) ◽  
pp. 448-457
Author(s):  
Vojtěch Hron ◽  
Lena Halounová

The knowledge of roof shapes is essential for the creation of 3D building models. Many experts and researchers use 3D building models for specialized tasks, such as creating noise maps, estimating the solar potential of roof structures, and planning new wireless infrastructures. Our aim is to introduce a technique for automating the creation of topologically correct roof building models using outlines and aerial image data. In this study, we used building footprints and vertical aerial survey photographs. Aerial survey photographs enabled us to produce an orthophoto and a digital surface model of the analysed area. The developed technique made it possible to detect roof edges from the orthophoto and to categorize the edges using spatial relationships and height information derived from the digital surface model. This method allows buildings with complicated shapes to be decomposed into simple parts that can be processed separately. In our study, a roof type and model were determined for each building part and tested with multiple datasets with different levels of quality. Excellent results were achieved for simple and medium complex roofs. Results for very complex roofs were unsatisfactory. For such structures, we propose using multitemporal images because these can lead to significant improvements and a better roof edge detection. The method used in this study was shared with the Czech national mapping agency and could be used for the creation of new 3D modelling products in the near future.


2017 ◽  
Vol 29 (4) ◽  
pp. 697-705 ◽  
Author(s):  
Satoshi Muramatsu ◽  
Tetsuo Tomizawa ◽  
Shunsuke Kudoh ◽  
Takashi Suehiro ◽  
◽  
...  

In order to realize the work of goods conveyance etc. by robot, localization of robot position is fundamental technology component. Map matching methods is one of the localization technique. In map matching method, usually, to create the map data for localization, we have to operate the robot and measure the environment (teaching run). This operation requires a lot of time and work. In recent years, due to improved Internet services, aerial image data is easily obtained from Google Maps etc. Therefore, we utilize the aerial images as a map data to for mobile robots localization and navigation without teaching run. In this paper, we proposed the robot localization and navigation technique using aerial images. We verified the proposed technique by the localization and autonomous running experiment.


2020 ◽  
Vol 86 (3) ◽  
pp. 177-186
Author(s):  
Matthew Plummer ◽  
Douglas Stow ◽  
Emanuel Storey ◽  
Lloyd Coulter ◽  
Nicholas Zamora ◽  
...  

Image registration is an important preprocessing step prior to detecting changes using multi-temporal image data, which is increasingly accomplished using automated methods. In high spatial resolution imagery, shadows represent a major source of illumination variation, which can reduce the performance of automated registration routines. This study evaluates the statistical relationship between shadow presence and image registration accuracy, and whether masking and normalizing shadows leads to improved automatic registration results. Eighty-eight bitemporal aerial image pairs were co-registered using software called Scale Invariant Features Transform (<small>SIFT</small>) and Random Sample Consensus (<small>RANSAC</small>) Alignment (<small>SARA</small>). Co-registration accuracy was assessed at different levels of shadow coverage and shadow movement within the images. The primary outcomes of this study are (1) the amount of shadow in a multi-temporal image pair is correlated with the accuracy/success of automatic co-registration; (2) masking out shadows prior to match point select does not improve the success of image-to-image co-registration; and (3) normalizing or brightening shadows can help match point routines find more match points and therefore improve performance of automatic co-registration. Normalizing shadows via a standard linear correction provided the most reliable co-registration results in image pairs containing substantial amounts of relative shadow movement, but had minimal effect for pairs with stationary shadows.


Author(s):  
D. Hein ◽  
R. Berger

<p><strong>Abstract.</strong> Many remote sensing applications demand for a fast and efficient way of generating orthophoto maps from raw aerial images. One prerequisite is direct georeferencing, which allows to geolocate aerial images to their geographic position on the earth’s surface. But this is only half the story. When dealing with a large quantity of highly overlapping images, a major challenge is to select the most suitable image parts in order to generate seamless aerial maps of the captured area. This paper proposes a method that quickly determines such an optimal (rectangular) section for each single aerial image, which in turn can be used for generating seamless aerial maps. Its key approach is to clip aerial images depending on their geometric intersections with a terrain elevation model of the captured area, which is why we call it <i>terrain aware image clipping</i> (TAC). The method has a modest computational footprint and is therefore applicable even for rather limited embedded vision systems. It can be applied for both, real-time aerial mapping applications using data links as well as for rapid map generation right after landing without any postprocessing step. Referring to real-time applications, this method also minimizes transmission of redundant image data. The proposed method has already been demonstrated in several search-and-rescue scenarios and real-time mapping applications using a broadband data link and diffent kinds of camera and carrier systems. Moreover, a patent for this technology is pending.</p>


Sign in / Sign up

Export Citation Format

Share Document