scholarly journals Thermodynamic analysis of a hybrid energy system using geothermal and solar energy sources with thermal storage in a residential building

2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Shaimaa Seyam ◽  
Ibrahim Dincer ◽  
Martin Agelin‐Chaab
Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1581
Author(s):  
Wenqiang Zhu ◽  
Jiang Guo ◽  
Guo Zhao ◽  
Bing Zeng

The hybrid renewable energy system is a promising and significant technology for clean and sustainable island power supply. Among the abundant ocean energy sources, tidal current energy appears to be very valuable due to its excellent predictability and stability, particularly compared with the intermittent wind and solar energy. In this paper, an island hybrid energy microgrid composed of photovoltaic, wind, tidal current, battery and diesel is constructed according to the actual energy sources. A sizing optimization method based on improved multi-objective grey wolf optimizer (IMOGWO) is presented to optimize the hybrid energy system. The proposed method is applied to determine the optimal system size, which is a multi-objective problem including the minimization of annualized cost of system (CACS) and deficiency of power supply probability (DPSP). MATLAB software is utilized to program and simulate the hybrid energy system. Optimization results confirm that IMOGWO is feasible to optimally size the system, and the energy management strategy effectively matches the requirements of system operation. Furthermore, comparison of hybrid systems with and without tidal current turbines is undertaken to confirm that the utilization of tidal current turbines can contribute to enhancing system reliability and reducing system investment, especially in areas with abundant tidal energy sources.


Author(s):  
ZHIGANG TIAN ◽  
AMIR AHMAD SEIFI

A hybrid energy system integrates renewable energy sources like wind, solar, micro-hydro and biomass, fossil fuel power generators such as diesel generators and energy storage. Hybrid energy system is an excellent option for providing electricity for remote and rural locations where access to grid is not feasible or economical. Reliability and cost-effectiveness are the two most important objectives when designing a hybrid energy system. One challenge is that the existing methods do not consider the time-varying characteristics of the renewable sources and the energy demand over a year, while the distributions of a power source or demand are different over the period, and multiple power sources can often times complement one another. In this paper, a reliability analysis method is developed to address this challenge, where wind and solar are the two renewable energy sources that are considered. The cost evaluation of hybrid energy systems is presented. A numerical example is used to demonstrate the proposed method.


2021 ◽  
Vol 14 (1) ◽  
pp. 57-66
Author(s):  
Saadoon Abdul Hafedh

Hybrid energy systems is an energy system which employs the combination of various renewable energy sources (solar, wind, biomass, hydro, and hydrogen fuel) with conventional energy sources to supply electricity. These systems have become reliable and most cost-effective as compare to single-source energy system for rural electrification. The objective of the present study is to address the demand for electrification of remote rural village in eastern Iraq. The methodology is carried out for optimization of hybrid energy system comprising (Photovoltaic, battery, diesel generator) by using HOMER to minimize the cost of energy and the greenhouse gas emissions. For different configuration of energy sources, the capital cost, net present cost and cost of energy is determined for the optimized hybrid energy system on the basis of the electric consumption demand for the selected site. The simulation results show that the most techno-economic analysis for hybrid energy system can feed the  rural village in eastern Iraq to meet a daily load of 30 kW has consisted of 6 kW photovoltaic array, 7 kW power inverter, 20 units of battery (305 Ah and 6V) and 35 kW wind turbines. The optimized energy system has a cost of energy about $ 0.117/kWh and total net present cost  by about $14800. The environmental assessment of the hybrid system shows that the greenhouse gases emissions will reduce about 25ton CO2/year (16968 kg/year) in the local atmosphere.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
P. Balamurugan ◽  
S. Kumaravel ◽  
S. Ashok

The focus of the world on renewable energy sources is growing rapidly due to its availability and environment friendliness. However, the renewable energy influenced by natural conditions is being intermittent, it is difficult to accomplish stable energy supply only by one kind of renewable energy source. In order to achieve reliability, it is necessary to integrate two or more energy sources together in an optimal way as hybrid energy system. Optimal allocation of sources, unpredictable load demand, intermittent behaviors of sources, and charging and discharging of storage devices are the major challenges in operating a hybrid energy system. A new controller algorithm is developed and implemented in controller hardware to overcome the above issues. The controller is incorporated in biomass gasifier-based hybrid energy system in a university campus at south India. A case study is carried out in real-time at the site for a typical day. From the experimentation, it is estimated that the annual savings in the operating cost are Rs 375,459.00 ($8475.4) for the optimal allocation of the sources by the controller.


Author(s):  
Haipeng Guan ◽  
Yan Ren ◽  
Qiuxia Zhao ◽  
Hesam Parvaneh

The increasing trend in power consumption, mainly due to the rapid population growth, has resulted in grid outages and low-reliability grid connections. Renewable-based hybrid energy systems are one of the emerging alternatives for traditional and low-reliability grid connections. In this paper, a stand-alone hybrid energy system is proposed for a remote residential house. HOMER software is used for the optimisation of the proposed energy system. The main contribution of the paper is focused on considering two influential parameters, such as annual load growth and photovoltaic (PV) degradation rates in the optimal planning of the hybrid energy system. Simulation results indicate that considering influential parameters more realistic results, including system configuration, total net present cost (NPC) and optimal operation of the energy sources are achievable. Total NPC of the system obtained as 70,072 US$, which shows 52,029 US$ growth in comparison to the case neglected annual load growth and PV degradation rates. The optimum configuration benefits from higher penetration of renewable energy sources (RESs). Moreover, according to the comparison made with only-grid system, the proposed hybrid renewable-based energy system saves a large number of emissions. Based on the results, around 292,049.4202 kg emissions have been saved over 25 years of the project.


eLEKTRIKA ◽  
2018 ◽  
Vol 10 (2) ◽  
pp. 28
Author(s):  
Harmini Harmini ◽  
Titik Nurhayati

<p>Hybrid energy system is to combine two energy sources that will provide power to the load. Sources of solar energy and wind energy will be used to generate power. In this research will be designed a model of hybrid system of solar energy and wind energy. The system is made equipped with energy storage systems in the form of batteries. Simulation or modeling using a circuit with components appropriate to the field application. Analysis of this system is the performance of hybrid generator characteristics based on load changes in the form of voltage, current and power values. The power generated by the PLTS is 3,000 Watts and the wind generator is 1,000 Watt with a resistive load of 4,000 Watt. Hybrid system generates a power of 2640 Watt so that the efficiency of hybrid system by 66%</p><p>Keywords: Hybrid system, wind energy, solar energy</p>


Sign in / Sign up

Export Citation Format

Share Document