Numerical simulations of a full-scale cable tray fire using small-scale test data

2018 ◽  
Vol 43 (5) ◽  
pp. 486-496 ◽  
Author(s):  
Tarek Beji ◽  
Bart Merci
Author(s):  
Easwaran N. Krishnan ◽  
Hadi Ramin ◽  
Gurubalan Annadurai ◽  
Wahab O. Alabi ◽  
Carey J. Simonson

Abstract Fixed-bed regenerators (FBRs) are air-to-air energy exchangers used to reduce energy consumption in heating, ventilation and air conditioning (HVAC) systems. Since energy savings are directly related to the effectiveness of FBRs, testing is essential to determine the effectiveness of FBRs for quality assurances and during product development. However, testing of full-scale FBRs has disadvantages such as requiring full-scale prototypes, a high volume of conditioned airflow, long tests, and large testing laboratories. The disadvantages are especially crucial during product development and can be overcome by small-scale testing provided the test data can be used to evaluate accurately full-scale FBRs. The major contribution of this paper is two new methodologies (one direct method and one predictive method) to determine the sensible effectiveness of full-scale FBRs from small-scale test data. In the direct method, the effectiveness of the full-scale FBR is determined directly from the small-scale test data, whereas in the predictive method the effectiveness is determined using a numerical model and a literature correlation in addition to the small-scale test data. Both methods are shown to have uncertainties within the specified uncertainty limits required by testing standards and are applied to evaluate the influence of geometrical parameters (corrugation angle and corrugation depth) on the effectiveness of FBRs. These proposed test methods and results will be useful in the design and development of FBRs for HVAC applications.


Land ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 520
Author(s):  
Guri Venvik ◽  
Floris Boogaard

The rain gardens at Bryggen in Bergen, Western Norway, is designed to collect, retain, and infiltrate surface rainfall runoff water, recharge the groundwater, and replenish soil moisture. The hydraulic infiltration capacity of the Sustainable Drainage System (SuDS), here rain gardens, has been tested with small-scale and full-scale infiltration tests. Results show that infiltration capacity meets the requirement and is more than sufficient for infiltration in a cold climate. The results from small-scale test, 245–404 mm/h, shows lower infiltration rates than the full-scale infiltration test, with 510–1600 mm/h. As predicted, an immediate response of the full-scale infiltration test is shown on the groundwater monitoring in the wells located closest to the infiltration point (<30 m), with a ca. 2 days delayed response in the wells further away (75–100 m). Results show that there is sufficient capacity for a larger drainage area to be connected to the infiltration systems. This study contributes to the understanding of the dynamics of infiltration systems such as how a rain garden interacts with local, urban water cycle, both in the hydrological and hydrogeological aspects. The results from this study show that infiltration systems help to protect and preserve the organic rich cultural layers below, as well as help with testing and evaluating of the efficiency, i.e., SuDS may have multiple functions, not only storm water retention. The functionality is tested with water volumes of 40 m3 (600 L/min for 2 h and 10 min), comparable to a flash flood, which give an evaluation of the infiltration capacity of the system.


2005 ◽  
Vol 8 ◽  
pp. 469-480 ◽  
Author(s):  
S. Nam ◽  
J. De Ris ◽  
Peter Wu ◽  
R. Bill

Author(s):  
Satoru Takano ◽  
Masao Ono ◽  
Sotaro Masanobu

For a fundamental understanding of pipe wear under hydraulic transportation of deep-sea mining, a small scale test is conducted because there are many restrictions in conducting a full scale test. The small scale test apparatus are set up using the pipes of about 80mm in diameter and the rocks of which maximum particle diameters are about 20mm are used. In the test, the pipe materials and the pipe inclination are changed to evaluate the differential of the amount of pipe material loss. Furthermore, the amount of the pipe material loss in full scale is estimated based on the small scale test results.


2019 ◽  
Vol 84 ◽  
pp. 1-12
Author(s):  
James M. Williams ◽  
Farshid Vahedifard ◽  
Isaac L. Howard ◽  
Arman Borazjani ◽  
George L. Mason ◽  
...  

1996 ◽  
Author(s):  
J. Varnier ◽  
J. Piet ◽  
D. Gely ◽  
G. Elias ◽  
S. Radulovic

2012 ◽  
Vol 3 (1) ◽  
pp. 25-35
Author(s):  
Matthias Verstraete ◽  
Stijn Hertelé ◽  
Wim De Waele ◽  
Rudi Denys

Accessing nowadays fossil fuel reserves requires a strain-based design approach. Within suchdesign, the ductile tearing resistance is a key parameter in assessing the defect tolerance. To determinethis tearing resistance, full scale (pressurized) tests can be performed. However, such approach would becostly and time consuming. Consequently, effort is made to select appropriate small scale test specimens.Most research has focused so far on the single edge notch bend (SENB) and tensile (SENT) specimen. Toevaluate the suitability of these test specimens, the crack tip stress fields can be examined or theresistance curves compared with full scale structures. This paper aims at comparing the trends observedusing these techniques. Furthermore, the suitability of the small scale test specimens is evaluated. It isconcluded that sufficiently long (length-to-width ratio equal to ten) clamped SENT specimens have thepotential to predict the tearing resistance of full scale pipes. In addition, the internal pressure does notsignificantly affect the fracture toughness. These conclusions are stated by both experimental results andfinite element simulations.


Sign in / Sign up

Export Citation Format

Share Document