Improvement of a pressure gradient method and its application to an unsteady flow problem

1985 ◽  
Vol 5 (7) ◽  
pp. 627-635 ◽  
Author(s):  
Yoshihiro Mochimaru
2006 ◽  
Vol 3 (3) ◽  
pp. 470-480
Author(s):  
Baghdad Science Journal

This paper deals with numerical study of the flow of stable and fluid Allamstqr Aniotina in an area surrounded by a right-angled triangle has touched particularly valuable secondary flow cross section resulting from the pressure gradient In the first case was analyzed stable flow where he found that the equations of motion that describe the movement of the fluid


2014 ◽  
Vol 1016 ◽  
pp. 546-553
Author(s):  
Abdul M. Siddiqui ◽  
Maya K. Mitkova ◽  
Ali R. Ansari

Unsteady, pressure driven in the gap between two parallel plates flow of two non-Newtonian incompressible second grade fluids is considered. The governing equations are established for the particular two-layer flow and analytical solutions of the equations that satisfy the imposed boundary conditions are obtained. The velocity of each fluid is expressed as function of the material constants, time dependent pressure gradient and other characteristics of the fluids. As part of the solution, an expression for the interface velocity is derived. We analyze the shift of the velocity maximum from one to another fluid as a function of variety of values of fluids’ parameters.


2000 ◽  
Vol 10 (02) ◽  
pp. 187-202 ◽  
Author(s):  
GIUSEPPE PONTRELLI

The unsteady flow of a viscoelastic fluid in a straight, long, rigid pipe, driven by a suddenly imposed pressure gradient is studied. The used model is the Oldroyd-B fluid modified with the use of a nonconstant viscosity, which includes the effect of the shear-thinning of many fluids. The main application considered is in blood flow. Two coupled nonlinear equations are solved by a spectral collocation method in space and the implicit trapezoidal finite difference method in time. The presented results show the role of the non-Newtonian terms in unsteady phenomena.


Author(s):  
Fan Yang ◽  
Shuhong Liu ◽  
Jinwei Li ◽  
Yulin Wu

A numerical study and PIV investigation of flow in a novel viscous-based pumping device appropriate for microscale applications is described. The device, essentially consisting of a rotating cylinder eccentrically placed in a channel, is shown to be capable of generating a net flow. The two shape cross-sections of cylinders, the circular and four semi-elliptic lobed contour are studied, which is the steady and unsteady flow problem, respectively. The lattice Boltzmann equation (LBE) simulations at low Reynolds numbers are carried out to study the influence of various geometric parameters, which the results are compared with the PIV experiment ones. The unified solid curved wall boundary condition based on interpolation and the balance of momentum on the wall of the LBE simulation is used in steady and unsteady flow, and the moving boundary condition is also used in the latter. The numerical results indicated that the more effective pumping and better performance is obtained with the decrease of Reynolds number, as well as the increase regular degree of cylinder cross-section.


1975 ◽  
Vol 71 (1) ◽  
pp. 123-144 ◽  
Author(s):  
D. Bechert ◽  
E. Pfizenmaier

The exit condition at the trailing edge of a nozzle for slightly unsteady flow has been investigated experimentally. This problem plays a crucial role in sound transmission through nozzles with flow. The measuring technique used is new and is based on the synchronization of a laser beam to the wave motion of a small smoke filament in the boundary layer leaving the nozzle. The resolution of the jet flow deflexion measurements is of the order of 1–3μm. The authors found the jet deflexion envelope to have a nearly parabolic shape near the nozzle edge. The size of this ‘parabolic’ region decreases with decreasing Strouhal number. This statement applies to the motion of the exterior border of the boundary layer at the dividing streamline between flow originating from the interior of the nozzle and flow coming from outside. It was found that the unsteady flow problem near the edge remains linear for fluctuating velocities of small magnitude.


2006 ◽  
Vol 1 (2) ◽  
pp. 194-203 ◽  
Author(s):  
Sai K.S., . ◽  
N.S. Swamy . ◽  
H.R. Nataraja . ◽  
S.B. Tiwari . ◽  
B. Nageswara Rao .

Sign in / Sign up

Export Citation Format

Share Document