On the Unsteady Flow of Two Incompressible Immiscible Second Grade Fluids between Two Parallel Plates

2014 ◽  
Vol 1016 ◽  
pp. 546-553
Author(s):  
Abdul M. Siddiqui ◽  
Maya K. Mitkova ◽  
Ali R. Ansari

Unsteady, pressure driven in the gap between two parallel plates flow of two non-Newtonian incompressible second grade fluids is considered. The governing equations are established for the particular two-layer flow and analytical solutions of the equations that satisfy the imposed boundary conditions are obtained. The velocity of each fluid is expressed as function of the material constants, time dependent pressure gradient and other characteristics of the fluids. As part of the solution, an expression for the interface velocity is derived. We analyze the shift of the velocity maximum from one to another fluid as a function of variety of values of fluids’ parameters.

2011 ◽  
Vol 66 (1-2) ◽  
pp. 40-46 ◽  
Author(s):  
Corina Fetecau ◽  
Muhammad Imran ◽  
Constantin Fetecau

Taylor-Couette flow in an annulus due to a time-dependent torque suddenly applied to one of the cylinders is studied by means of finite Hankel transforms. The exact solutions, presented under series form in terms of usual Bessel functions, satisfy both the governing equations and all imposed initial and boundary conditions. They can easily be reduced to give similar solutions for Maxwell, second grade, and Newtonian fluids performing the same motion. Finally, some characteristics of the motion, as well as the influence of the material parameters on the behaviour of the fluid, are emphasized by graphical illustrations.


Author(s):  
Abbas Hazbavi ◽  
Sajad Sharhani

In this study, the hydrodynamic characteristics are investigated for magneto-micropolar fluid flow through an inclined channel of parallel plates with constant pressure gradient. The lower plate is maintained at constant temperature and upper plate at a constant heat flux. The governing equations which are continuity, momentum and energy are are solved numerically by Explicit Runge-Kutta. The effect of characteristic parameters is discussed on velocity and microrotation in different diagrams. The nonlinear parameter affected the velocity microrotation diagrams. An increase in the value of Hartmann number slows down the movement of the fluid in the channel. The application of the magnetic field induces resistive force acting in the opposite direction of the flow, thus causing its deceleration. Also the effect of pressure gradient is investigated on velocity and microrotation in different diagrams.


2011 ◽  
Vol 66 (12) ◽  
pp. 753-759 ◽  
Author(s):  
Constantin Fetecau ◽  
Corina Fetecau ◽  
Mehwish Rana

General solutions corresponding to the unsteady motion of second-grade fluids induced by an infinite plate that applies a shear stress ƒ (t) to the fluid are established. These solutions can immediately be reduced to the similar solutions for Newtonian fluids. They can be used to obtain known solutions from the literature or any other solution of this type by specifying the function ƒ (.). Furthermore, in view of a simple remark, general solutions for the flow due to a moving plate can be developed.


2010 ◽  
Vol 15 (2) ◽  
pp. 155-158 ◽  
Author(s):  
C. Fetecau ◽  
A. U. Awan ◽  
M. Athar

In this brief note, we show that the unsteady flow of a generalized second grade fluid due to a constant couple, as well as the similar flow of Newtonian and ordinary second grade fluids, ultimately becomes steady. For this, a new form of the exact solution for velocity is established. This solution is presented as a sum of the steady and transient components. The required time to reach the steady-state is obtained by graphical illustrations.


2006 ◽  
Vol 1 (2) ◽  
pp. 194-203 ◽  
Author(s):  
Sai K.S., . ◽  
N.S. Swamy . ◽  
H.R. Nataraja . ◽  
S.B. Tiwari . ◽  
B. Nageswara Rao .

2006 ◽  
Vol 2006 ◽  
pp. 1-9 ◽  
Author(s):  
C. Fetecau ◽  
Corina Fetecau

The exact starting solutions corresponding to the motions of a second-grade fluid, due to the cosine and sine oscillations of an infinite edge and of an infinite duct of rectangular cross-section as well as those induced by an oscillating pressure gradient in such a duct, are determined by means of the double Fourier sine transforms. These solutions, presented as sum of the steady-state and transient solutions, satisfy both the governing equations and all associate initial and boundary conditions. In the special case whenα1→0, they reduce to those for a Navier-Stokes fluid.


2006 ◽  
Vol 2006 ◽  
pp. 1-22 ◽  
Author(s):  
Muhammad R. Mohyuddin ◽  
S. Asghar ◽  
T. Hayat ◽  
A. M. Siddiqui

This paper deals with analytical solutions for the time-dependent equations arising in a second-grade fluid. The solutions have been developed by assuming certain forms of the stream function. Expressions for velocity components are obtained for flows in plane polar, axisymmetric cylindrical, and axisymmetric spherical polar coordinates. The obtained solutions are compared with existing results.


Sign in / Sign up

Export Citation Format

Share Document