Discussion on the effectiveness of cement replacement for carbon dioxide (CO2 ) emission reduction in concrete

2017 ◽  
Vol 8 (2) ◽  
pp. 366-378 ◽  
Author(s):  
İrem Şanal
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Youngju Na ◽  
Bumjin Han ◽  
Seunghyun Son

Precast concrete (PC) method of construction is preferred for excellence in the reduction of construction period, lightweight, and durability and for PC member to be mostly transported to a site after its production in the in-plant production because the in situ production of the PC member is negatively perceived because of the limitation of space or production process being complex and difficult. However, if the PC member is produced on site and installed, it is possible to reduce the carbon dioxide emissions that are generated during shipping and loading and unloading, which are indirectly required for in-plant production. Carbon dioxide emission reduction effect due to the difference between the in situ production and in-plant production process of the PC member was confirmed by the existing studies, but the study of the carbon dioxide reduction effect according to various production environments of the in-plant production has not been performed. Therefore, the purpose of this study is to analyze the CO2 emission reduction effect of the PC member produced in site according to the in-plant production environment. As a result, it was found that when PC members were produced on site, there was an effect of reducing CO2 emissions by an average of 25.64% compared to factory production. In future, the results of this study will be used as basic data for establishing a CO2 emission reduction plan at construction sites.


2021 ◽  
Vol 13 (8) ◽  
pp. 4268
Author(s):  
Jingyuan Li ◽  
Jinhua Cheng ◽  
Beidi Diao ◽  
Yaqi Wu ◽  
Peiqi Hu ◽  
...  

The reduction of CO2 emission has become one of the significant tasks to control climate change in China. This study employs Exploratory Spatial Data Analysis (ESDA) to identify the provinces in China with different types of spatiotemporal transition, and applies the Logarithmic Mean Divisia Index (LMDI) to analyze the influencing factors of industrial CO2 emissions. Spatial autocorrelation of provincial industrial CO2 emissions from 2003 to 2017 has been demonstrated. The results are as follows: (1) 30 provinces in China are categorized into 8 types of spatiotemporal transition, among which 24 provinces are characterized by stable spatial structure and 6 provinces show significant spatiotemporal transition; (2) For all types of spatiotemporal transition, economic scale effect is mostly contributed to industrial CO2 emission, while energy intensity effect is the most crucial driving force to reduce industrial carbon dioxide emission; (3) provinces of type HH-HH, HL-HL and HL-HH are most vital for CO2 emission reduction, while the potential CO2 emission increase of developing provinces in LL-LL, LH-LH and LL-LH should also be taken into account. Specific measures for CO2 emission reduction are suggested accordingly.


2020 ◽  
Vol 12 (18) ◽  
pp. 7402
Author(s):  
Bong Jae Lee ◽  
Jeong Il Lee ◽  
Soo Young Yun ◽  
Beom Gu Hwang ◽  
Cheol-Soo Lim ◽  
...  

This study introduces a novel methodology to calculate the carbon dioxide (CO2) emission reduction related to residual emissions, calculating the CO2 emission reduction through a 2 MW (40 tCO2/day) carbon capture and utilization (CCU) plant installed at a 500 MW coal-fired power plant in operation, to evaluate the accuracy, maintainability, and reliability of the quantified reduction. By applying the developed methodology to calculate the CO2 emission reduction, the established amount of CO2 reduction in the mineral carbonation was evaluated through recorded measurement and monitoring data of the 2 MW CCU plant at the operating coal-fired plant. To validate the reduction, the accuracy, reproducibility, consistency, and maintainability of the reduction should be secured, and based on these qualifications, it is necessary to evaluate the contribution rate of nationally determined contributions (NDCs) in each country. This fundamental study establishes the concept of CCU CO2 reduction and quantifies the reduction to obtain the validation of each country for the reduction. The established concept of the CCU in this study can also be applied to other CCU systems to calculate the reduction, thereby providing an opportunity for CCU technology to contribute to the NDCs in each country and invigorate the technology.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1161
Author(s):  
Maedeh Rahnama Mobarakeh ◽  
Miguel Santos Silva ◽  
Thomas Kienberger

The pulp and paper (P&P) sector is a dynamic manufacturing industry and plays an essential role in the Austrian economy. However, the sector, which consumes about 20 TWh of final energy, is responsible for 7% of Austria’s industrial CO2 emissions. This study, intending to assess the potential for improving energy efficiency and reducing emissions in the Austrian context in the P&P sector, uses a bottom-up approach model. The model is applied to analyze the energy consumption (heat and electricity) and CO2 emissions in the main processes, related to the P&P production from virgin or recycled fibers. Afterward, technological options to reduce energy consumption and fossil CO2 emissions for P&P production are investigated, and various low-carbon technologies are applied to the model. For each of the selected technologies, the potential of emission reduction and energy savings up to 2050 is estimated. Finally, a series of low-carbon technology-based scenarios are developed and evaluated. These scenarios’ content is based on the improvement potential associated with the various processes of different paper grades. The results reveal that the investigated technologies applied in the production process (chemical pulping and paper drying) have a minor impact on CO2 emission reduction (maximum 10% due to applying an impulse dryer). In contrast, steam supply electrification, by replacing fossil fuel boilers with direct heat supply (such as commercial electric boilers or heat pumps), enables reducing emissions by up to 75%. This means that the goal of 100% CO2 emission reduction by 2050 cannot be reached with one method alone. Consequently, a combination of technologies, particularly with the electrification of the steam supply, along with the use of carbon-free electricity generated by renewable energy, appears to be essential.


Sign in / Sign up

Export Citation Format

Share Document