Influence on the oil-gas accumulation potential of the laminated algal micritic dolomite in Jixian system from Mesozoic magmatic activities at the south-western margin of the Ordos Basin, China

2017 ◽  
Vol 53 ◽  
pp. 190-200 ◽  
Author(s):  
Futian Liu ◽  
Rongxi Li ◽  
Bangsheng Zhao ◽  
Jinghua Cheng ◽  
Delu Li ◽  
...  
2017 ◽  
Vol 54 (8) ◽  
pp. 893-901 ◽  
Author(s):  
Mingjian Dai ◽  
Yunbiao Peng ◽  
Chenjun Wu ◽  
Yangquan Jiao ◽  
Lu Liu ◽  
...  

The Ordos Basin is one of the top oil-, gas-, and coal-producing basins in China and is increasingly recognized as an important uranium mineralization province. Uranium deposits occur near the margin of the basin and are mainly hosted in the sandstones of the Jurassic Zhiluo Formation. The Daying uranium deposit in the Ordos Basin is one of the most important large sandstone-type uranium deposits in China. Based on thin section analysis and electron microprobe measurements, we used analytical chemical data to study the characteristics of the Daying uranium deposit, including the type, structure, particle size, material composition, chemical composition, form, and valence state of the uranium. The uranium mainly exists in three forms: an absorbed form, independent minerals, and uranium-bearing minerals. Most of the uranium in the ore is U4+, and the proportion of U6+ ranges from 18% to 55%, with an average of 33%. The proportion of U6+ is relatively high in the cores containing low-grade ore. This study provides a reference for determining the best smelting technology with which to further develop this deposit.


2017 ◽  
Vol 5 (2) ◽  
pp. SF81-SF98
Author(s):  
Jing Wang ◽  
Xiangbo Li ◽  
Huaqing Liu ◽  
Xiuqin Deng ◽  
Rong Wanyan

The Ordos Basin has abundant conventional and unconventional oil and gas resources. Focusing on shale oil in the Ordos Basin, we studied the distribution, depositional features, and resource potential of shales in the upper Triassic Yanchang Formation based on the Ordos Basin development and depocenter migration. During the late Triassic, the Ordos Basin was a large cratonic sedimentary basin that bordered to the Hexi Corridor to the west, the southern North China block to the east, the Qilian and western Qinling orogenic zone to the south, and the foot of the Yin Mountains to the north. During deposition of the Yanchang Formation, its depocenter was not fixed. It migrated to the west before deposition of the Chang 7 oil layer and to the south after deposition of the Chang 7 oil layer. Controlled by the depocenter migration and relevant deep-lake facies, the Yanchang Formation mainly developed two sets of source rocks. The dark mudstone and shale in the Chang 9 oil layer is chiefly distributed in the south-central region of the basin, with thicknesses of 4–16 m and covers an area of approximately [Formula: see text]. The shales in the Chang 7 oil layer can be divided into two types, black oil shale and dark mudstone, and they are much thicker and more widespread than the dark mudstone in the Chang 9 oil layer. The black shale alone can be up to 60 m thick, and covers an area of more than [Formula: see text]. The shales in the Chang 7 and 9 oil layers were mainly formed in a deep-lake environment that produced high concentrations of organic matter and large hydrocarbon generation potential. According to preliminary estimates, the Chang 7 oil shale may contain [Formula: see text] of oil, thereby representing a huge resource potential with broad exploration prospectivity.


2015 ◽  
Vol 89 (s1) ◽  
pp. 281-281 ◽  
Author(s):  
Fengqin WANG ◽  
Zhili DU ◽  
Hongjun LIU ◽  
Linpei FAN ◽  
Shenbao BAI ◽  
...  

2018 ◽  
Vol 92 (1) ◽  
pp. 406-407 ◽  
Author(s):  
Feifei WANG ◽  
Chiyang LIU ◽  
Haiqing NIU ◽  
Ningchao ZHOU ◽  
Xiuhua LI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document