scholarly journals A new approach to retrieve cloud base height of marine boundary layer clouds

2013 ◽  
Vol 40 (16) ◽  
pp. 4448-4453 ◽  
Author(s):  
J. M. Li ◽  
Y. H. Yi ◽  
K. Stamnes ◽  
X. D. Ding ◽  
T. H. Wang ◽  
...  
2020 ◽  
Vol 13 (5) ◽  
pp. 2363-2379 ◽  
Author(s):  
Katia Lamer ◽  
Pavlos Kollias ◽  
Alessandro Battaglia ◽  
Simon Preval

Abstract. Ground-based radar observations show that, over the eastern North Atlantic, 50 % of warm marine boundary layer (WMBL) hydrometeors occur below 1.2 km and have reflectivities of < −17 dBZ, thus making their detection from space susceptible to the extent of surface clutter and radar sensitivity. Surface clutter limits the ability of the CloudSat cloud profiling radar (CPR) to observe the true cloud base in ∼52 % of the cloudy columns it detects and true virga base in ∼80 %, meaning the CloudSat CPR often provides an incomplete view of even the clouds it does detect. Using forward simulations, we determine that a 250 m resolution radar would most accurately capture the boundaries of WMBL clouds and precipitation; that being said, because of sensitivity limitations, such a radar would suffer from cloud cover biases similar to those of the CloudSat CPR. Observations and forward simulations indicate that the CloudSat CPR fails to detect 29 %–43 % of the cloudy columns detected by ground-based sensors. Out of all configurations tested, the 7 dB more sensitive EarthCARE CPR performs best (only missing 9.0 % of cloudy columns) indicating that improving radar sensitivity is more important than decreasing the vertical extent of surface clutter for measuring cloud cover. However, because 50 % of WMBL systems are thinner than 400 m, they tend to be artificially stretched by long sensitive radar pulses, hence the EarthCARE CPR overestimation of cloud top height and hydrometeor fraction. Thus, it is recommended that the next generation of space-borne radars targeting WMBL science should operate interlaced pulse modes including both a highly sensitive long-pulse mode and a less sensitive but clutter-limiting short-pulse mode.


2021 ◽  
Author(s):  
Bjorn Stevens ◽  
Ilya Serikov ◽  
Anna Lea Albright ◽  
Sandrine Bony ◽  
Geet George ◽  
...  

&lt;p&gt;Cloud free skies are rare in the trades. &amp;#160;We analyze conditions in which cloud-free conditions prevail. &amp;#160;For this purpose Raman water vapor measurements from the Barbados Cloud Observatory, complemented by ship-based measurements during EUREC4A are used to explore water vapor variability in the marine boundary layer. &amp;#160; We explore the consistency of the inferred cloud base height with estimates of temperature and water vapor from the lidar signal, and examine the co-variability of these quantities. &amp;#160;After having established the properties of these measurements, we seek to use them as well as others, to explain in what ways periods of cloud-free conditions are maintained, investigating the hypothesis that only when the wind stills is it simply sunny.&lt;/p&gt;


2010 ◽  
Vol 3 (5) ◽  
pp. 4231-4260 ◽  
Author(s):  
E. Hirsch ◽  
E. Agassi ◽  
I. Koren

Abstract. The height of a cloud in the atmospheric column is a key parameter in its characterization. Several remote sensing techniques (passive and active, either ground-based or on space-borne platforms) and in-situ measurements are routinely used in order to estimate top and base heights of clouds. In this article we present a novel method that combines thermal imaging from the ground and sounded wind profile in order to derive the cloud base height. This method is independent of cloud types, making it efficient for both low boundary layer and high clouds. In addition, using thermal imaging ensures extraction of clouds' features during daytime as well as at nighttime. The proposed technique was validated by comparison to active sounding by ceilometers (which is a standard ground based method), to lifted condensation level (LCL) calculations, and to MODIS products obtained from space. As all passive remote sensing techniques, the proposed method extracts only the height of the lowest cloud layer, thus upper cloud layers are not detected. Nevertheless, the information derived from this method can be complementary to space-borne cloud top measurements when deep-convective clouds are present. Unlike techniques such as LCL, this method is not limited to boundary layer clouds, and can extract the cloud base height at any level, as long as sufficient thermal contrast exists between the radiative temperatures of the cloud and its surrounding air parcel. Another advantage of the proposed method is its simplicity and modest power needs, making it particularly suitable for field measurements and deployment at remote locations. Our method can be further simplified for use with visible CCD or CMOS camera (although nighttime clouds will not be observed).


2011 ◽  
Vol 4 (1) ◽  
pp. 117-130 ◽  
Author(s):  
E. Hirsch ◽  
E. Agassi ◽  
I. Koren

Abstract. The height of a cloud in the atmospheric column is a key parameter in its characterization. Several remote sensing techniques (passive and active, either ground-based or on space-borne platforms) and in-situ measurements are routinely used in order to estimate top and base heights of clouds. In this article we present a novel method that combines thermal imaging from the ground and sounded wind profile in order to derive the cloud base height. This method is independent of cloud types, making it efficient for both low boundary layer and high clouds. In addition, using thermal imaging ensures extraction of clouds' features during daytime as well as at nighttime. The proposed technique was validated by comparison to active sounding by ceilometers (which is a standard ground based method), to lifted condensation level (LCL) calculations, and to MODIS products obtained from space. As all passive remote sensing techniques, the proposed method extracts only the height of the lowest cloud layer, thus upper cloud layers are not detected. Nevertheless, the information derived from this method can be complementary to space-borne cloud top measurements when deep-convective clouds are present. Unlike techniques such as LCL, this method is not limited to boundary layer clouds, and can extract the cloud base height at any level, as long as sufficient thermal contrast exists between the radiative temperatures of the cloud and its surrounding air parcel. Another advantage of the proposed method is its simplicity and modest power needs, making it particularly suitable for field measurements and deployment at remote locations. Our method can be further simplified for use with visible CCD or CMOS camera (although nighttime clouds will not be observed).


2021 ◽  
Author(s):  
Lukas Zipfel ◽  
Hendrik Andersen ◽  
Jan Cermak

&lt;p&gt;Satellite observations are used in regional machine learning models to quantify sensitivities of marine boundary-layer clouds (MBLC) to aerosol changes.&lt;/p&gt;&lt;p&gt;MBLCs make up a large part of the global cloud coverage as they are persistently present over more than 20% of the Earth&amp;#8217;s oceans in the annual mean.They play an important role in Earth&amp;#8217;s energy budget by reflecting solar radiation and interacting with thermal radiation from the surface, leading to a net cooling effect. Cloud properties and their radiative characteristics such as cloud albedo, horizontal and vertical extent, lifetime and precipitation susceptibility are dependent on environmental conditions. Aerosols in their role as condensation nuclei affect these cloud radiative properties through changes in the cloud droplet number concentration and subsequent cloud adjustments to this perturbation. However, the magnitude and sign of these effects remain among the largest uncertainties in future climate predictions.&lt;/p&gt;&lt;p&gt;In an effort to help improve these predictions a machine learning approach in combination with observational data is pursued:&lt;/p&gt;&lt;p&gt;Satellite observations from the collocated A-Train dataset (C3M) for 2006-2011 are used in combination with ECMWF atmospheric reanalysis data (ERA5) to train regional Gradient Boosting Regression Tree (GBRT) models to predict changes in key physical and radiative properties of MBLCs. The cloud droplet number concentration (N&lt;sub&gt;d&lt;/sub&gt;) and the liquid water path (LWP) are simulated for the eastern subtropical oceans, which are characterised by a high annual coverage of MBLC due to the occurrence of semi-permanent stratocumulus sheets. Relative humidity above cloud, cloud top height and temperature below the cloud base and at the surface are identified as important predictors for both N&lt;sub&gt;d&lt;/sub&gt; and LWP.&amp;#160; The impact of each predictor variable on the GBRT model's output is analysed using Shapley values as a method of explainable machine learning, providing novel sensitivity estimates that will improve process understanding and help constrain the parameterization of MBLC processes in Global Climate Models.&lt;/p&gt;


2002 ◽  
Vol 13 (02) ◽  
pp. 217-227 ◽  
Author(s):  
N. KITOVA ◽  
K. IVANOVA ◽  
M. AUSLOOS ◽  
T. P. ACKERMAN ◽  
M. A. MIKHALEV

The scaling ranges of time correlations in the cloud base height records of marine boundary layer stratocumulus are studied applying the Detrended Fluctuation Analysis statistical method. We have found that time dependent variations in the evolution of the α exponent reflect the diurnal dynamics of cloud base height fluctuations in the marine boundary layer. In general, a more stable structure of the boundary layer corresponds to a lower value of the α-indicator, i.e., larger anti-persistence, thus a set of fluctuations tending to induce a greater stability of the stratocumulus. In contrast, during the periods of higher instability in the marine boundary, less anti-persistent (more persistent like) behavior of the system drags it out of equilibrium, corresponding to larger α values. From an analysis of the frequency spectrum, the stratocumulus base height evolution is found to be a nonstationary process with stationary increments. The occurrence of these statistics in cloud base height fluctuations suggests the usefulness of similar studies for the radiation transfer dynamics modeling.


2009 ◽  
Vol 137 (3) ◽  
pp. 1083-1110 ◽  
Author(s):  
Andrew S. Ackerman ◽  
Margreet C. vanZanten ◽  
Bjorn Stevens ◽  
Verica Savic-Jovcic ◽  
Christopher S. Bretherton ◽  
...  

Abstract Cloud water sedimentation and drizzle in a stratocumulus-topped boundary layer are the focus of an intercomparison of large-eddy simulations. The context is an idealized case study of nocturnal stratocumulus under a dry inversion, with embedded pockets of heavily drizzling open cellular convection. Results from 11 groups are used. Two models resolve the size distributions of cloud particles, and the others parameterize cloud water sedimentation and drizzle. For the ensemble of simulations with drizzle and cloud water sedimentation, the mean liquid water path (LWP) is remarkably steady and consistent with the measurements, the mean entrainment rate is at the low end of the measured range, and the ensemble-average maximum vertical wind variance is roughly half that measured. On average, precipitation at the surface and at cloud base is smaller, and the rate of precipitation evaporation greater, than measured. Including drizzle in the simulations reduces convective intensity, increases boundary layer stratification, and decreases LWP for nearly all models. Including cloud water sedimentation substantially decreases entrainment, decreases convective intensity, and increases LWP for most models. In nearly all cases, LWP responds more strongly to cloud water sedimentation than to drizzle. The omission of cloud water sedimentation in simulations is strongly discouraged, regardless of whether or not precipitation is present below cloud base.


Sign in / Sign up

Export Citation Format

Share Document