scholarly journals SIENA-XL for improving the assessment of gray and white matter volume changes on brain MRI

2017 ◽  
Vol 39 (3) ◽  
pp. 1063-1077 ◽  
Author(s):  
Marco Battaglini ◽  
Mark Jenkinson ◽  
Nicola De Stefano ◽  
2008 ◽  
Vol 193 (3) ◽  
pp. 210-215 ◽  
Author(s):  
Mark Walterfang ◽  
Philip K. McGuire ◽  
Alison R. Yung ◽  
Lisa J. Phillips ◽  
Dennis Velakoulis ◽  
...  

BackgroundGrey matter changes have been described in individuals who are pre- and peri-psychotic, but it is unclear if these changes are accompanied by changes in white matter structures.AimsTo determine whether changes in white matter occur prior to and with the transition to psychosis in individuals who are pre-psychotic who had previously demonstrated grey matter reductions in frontotemporal regions.MethodWe used magnetic resonance imaging (MRI) to examine regional white matter volume in 75 people with prodromal symptoms. A subset of the original group (n=21) were rescanned at 12–18 months to determine white matter volume changes. Participants were retrospectively categorised according to whether they had or had not developed psychosis at follow-up.ResultsComparison of the baseline MRI data from these two subgroups revealed that individuals who later developed psychosis had larger volumes of white matter in the frontal lobe, particularly in the left hemisphere. Longitudinal comparison of data in individuals who developed psychosis revealed a reduction in white matter volume in the region of the left fronto-occipital fasciculus. Participants who had not developed psychosis showed no reductions in white matter volume but increases in a region subjacent to the right inferior parietal lobule.DiscussionThe reduction in volume of white matter near the left fronto-occipital fasciculus may reflect a change in this tract in association with the onset of frank psychosis.


2021 ◽  
Vol 15 ◽  
Author(s):  
Ami Tsuchida ◽  
Alexandre Laurent ◽  
Fabrice Crivello ◽  
Laurent Petit ◽  
Antonietta Pepe ◽  
...  

Human brain white matter undergoes a protracted maturation that continues well into adulthood. Recent advances in diffusion-weighted imaging (DWI) methods allow detailed characterizations of the microstructural architecture of white matter, and they are increasingly utilized to study white matter changes during development and aging. However, relatively little is known about the late maturational changes in the microstructural architecture of white matter during post-adolescence. Here we report on regional changes in white matter volume and microstructure in young adults undergoing university-level education. As part of the MRi-Share multi-modal brain MRI database, multi-shell, high angular resolution DWI data were acquired in a unique sample of 1,713 university students aged 18–26. We assessed the age and sex dependence of diffusion metrics derived from diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) in the white matter regions as defined in the John Hopkins University (JHU) white matter labels atlas. We demonstrate that while regional white matter volume is relatively stable over the age range of our sample, the white matter microstructural properties show clear age-related variations. Globally, it is characterized by a robust increase in neurite density index (NDI), and to a lesser extent, orientation dispersion index (ODI). These changes are accompanied by a decrease in diffusivity. In contrast, there is minimal age-related variation in fractional anisotropy. There are regional variations in these microstructural changes: some tracts, most notably cingulum bundles, show a strong age-related increase in NDI coupled with decreases in radial and mean diffusivity, while others, mainly cortico-spinal projection tracts, primarily show an ODI increase and axial diffusivity decrease. These age-related variations are not different between males and females, but males show higher NDI and ODI and lower diffusivity than females across many tracts. These findings emphasize the complexity of changes in white matter structure occurring in this critical period of late maturation in early adulthood.


Neurology ◽  
2006 ◽  
Vol 66 (7) ◽  
pp. 1074-1078 ◽  
Author(s):  
B. Pérez-Dueñas ◽  
J. Pujol ◽  
C. Soriano-Mas ◽  
H. Ortiz ◽  
R. Artuch ◽  
...  

Background: Although phenylketonuria is a treatable disease, patients with late or nonoptimal phenylalanine-restricted diet may experience brain damage. The authors used tridimensional MRI and a voxelwise analysis method to investigate possible volume changes in the brain parenchyma of patients with phenylketonuria.Methods: The authors assessed 27 treated patients (mean age ± SD, 20 ± 7 years) and 27 matched control subjects. Global tissue volumes were compared, and statistical parametric maps of between-group regional volume differences were obtained for gray and white matter. Anatomic data were correlated with relevant clinical and biochemical variables.Results: Patients with phenylketonuria showed smaller gray matter volumes that were associated with lower IQ and older age at diagnosis. Voxel-based maps revealed that significant gray matter volume reduction occurred in motor and premotor cortex and thalamus. A relative increase in gray matter volume was observed in the ventral part of the striatum. The authors found no group differences for global white matter measurements. Higher recent phenylalanine levels, however, were associated with larger global white matter volume in early-treated patients. Voxel-based maps showed a relative volume reduction in periventricular white matter and a relative increase in the region of the internal capsule, extending to the adjacent thalamus and striatum.Conclusions: Treated patients may show significant gray and white matter volume changes related to the duration and strict observation of dietary treatment. Further studies are needed to investigate whether the presence of neurologic symptoms may be explained by specific anatomic alterations.


Neurology ◽  
2005 ◽  
Vol 64 (6) ◽  
pp. 1001-1007 ◽  
Author(s):  
M. Tiberio ◽  
D. T. Chard ◽  
D. R. Altmann ◽  
G. Davies ◽  
C. M. Griffin ◽  
...  

NeuroImage ◽  
2008 ◽  
Vol 41 (3) ◽  
pp. 657-667 ◽  
Author(s):  
Elisabetta Pagani ◽  
Federica Agosta ◽  
Maria A. Rocca ◽  
Domenico Caputo ◽  
Massimo Filippi

Brain ◽  
2005 ◽  
Vol 128 (6) ◽  
pp. 1454-1460 ◽  
Author(s):  
Jaume Sastre-Garriga ◽  
Gordon T. Ingle ◽  
Declan T. Chard ◽  
Mara Cercignani ◽  
Lluís Ramió-Torrentà ◽  
...  

2013 ◽  
Vol 44 (S 01) ◽  
Author(s):  
S Groeschel ◽  
C í Dali ◽  
P Clas ◽  
C Kehrer ◽  
M Wilke ◽  
...  

2013 ◽  
Vol 19 (9) ◽  
pp. 1175-1181 ◽  
Author(s):  
Angela Vidal-Jordana ◽  
Jaume Sastre-Garriga ◽  
Francisco Pérez-Miralles ◽  
Carmen Tur ◽  
Mar Tintoré ◽  
...  

Background: Investigation of atrophy data from a pivotal natalizumab trial has demonstrated an increased rate of volume loss, compared to placebo, after the first year of therapy. It was considered to be probably due to a pseudoatrophy effect. Objective: To assess grey and white matter volume changes and their relation to global brain volume changes and to baseline inflammation, for patients under natalizumab therapy. Methods: We selected 45 patients on natalizumab therapy for at least 24 months, with magnetic resonance imaging (MRI) scans at baseline, 12 and 24 months. We calculated the percentage brain volume change (PBVC) for the first and second year, using SIENA software. Grey and white matter fractions (GMF and WMF, respectively) for the first year were calculated with SPM5, using lesion masks. After quality checks, six patients were excluded. We studied the predictive variables of change in brain volumes. Results: The PBVC decrease was faster during the first year (−1.10% ± 1.43%), as compared to the second (−0.51% ± 0.96%) ( p = 0.037). These differences were more marked in patients with baseline gadolinium-enhancing lesions ( p = 0.005). Mean GMF and WMF changes during the first year of treatment were +1.15% (n.s.) and −1.72% ( p = 0.017), respectively. The presence of active lesions at baseline MRI predicted PBVC ( p = 0.022) and WMF change ( p = 0.026) during the first year of treatment, after adjusting for age and corticosteroid treatment. No predictors were found for GMF volume changes. Conclusion: Early brain volume loss during natalizumab therapy is mainly due to WMF volume loss and it is related to the inflammatory activity present at the onset of therapy. We found that the pseudoatrophy effect is mostly due to white matter volume changes.


Sign in / Sign up

Export Citation Format

Share Document