scholarly journals Soil water content in southern England derived from a cosmic-ray soil moisture observing system - COSMOS-UK

2016 ◽  
Vol 30 (26) ◽  
pp. 4987-4999 ◽  
Author(s):  
J. G. Evans ◽  
H. C. Ward ◽  
J. R. Blake ◽  
E. J. Hewitt ◽  
R. Morrison ◽  
...  
2015 ◽  
Vol 12 (9) ◽  
pp. 9813-9864 ◽  
Author(s):  
I. Heidbüchel ◽  
A. Güntner ◽  
T. Blume

Abstract. Cosmic ray neutron sensors (CRS) are a promising technique to measure soil moisture at intermediate scales. To convert neutron counts to average volumetric soil water content a simple calibration function can be used (the N0-calibration of Desilets et al., 2010). This calibration function is based on soil water content derived directly from soil samples taken within the footprint of the sensor. We installed a CRS in a mixed forest in the lowlands of north-eastern Germany and calibrated it 10 times throughout one calendar year. Each calibration with the N0-calibration function resulted in a different CRS soil moisture time series, with deviations of up to 0.12 m3 m-3 for individual values of soil water content. Also, many of the calibration efforts resulted in time series that could not be matched with independent in situ measurements of soil water content. We therefore suggest a new calibration function with a different shape that can vary from one location to another. A two-point calibration proved to be adequate to correctly define the shape of the new calibration function if the calibration points were taken during both dry and wet conditions covering at least 50 % of the total range of soil moisture. The best results were obtained when the soil samples used for calibration were linearly weighted as a function of depth in the soil profile and non-linearly weighted as a function of distance from the CRS, and when the depth-specific amount of soil organic matter and lattice water content was explicitly considered. The annual cycle of tree foliation was found to be a negligible factor for calibration because the variable hydrogen mass in the leaves was small compared to the hydrogen mass changes by soil moisture variations. Finally, we provide a best practice calibration guide for CRS in forested environments.


2016 ◽  
Vol 20 (3) ◽  
pp. 1269-1288 ◽  
Author(s):  
Ingo Heidbüchel ◽  
Andreas Güntner ◽  
Theresa Blume

Abstract. Measuring soil moisture with cosmic-ray neutrons is a promising technique for intermediate spatial scales. To convert neutron counts to average volumetric soil water content a simple calibration function can be used (the N0-calibration of Desilets et al., 2010). The calibration is based on soil water content derived directly from soil samples taken within the footprint of the sensor. We installed a cosmic-ray neutron sensor (CRS) in a mixed forest in the lowlands of north-eastern Germany and calibrated it 10 times throughout one calendar year. Each calibration with the N0-calibration function resulted in a different CRS soil moisture time series, with deviations of up to 0.1 m3 m−3 (24 % of the total range) for individual values of soil water content. Also, many of the calibration efforts resulted in time series that could not be matched with independent in situ measurements of soil water content. We therefore suggest a modified calibration function with a different shape that can vary from one location to another. A two-point calibration was found to effectively define the shape of the modified calibration function if the calibration points were taken during both dry and wet conditions spanning at least half of the total range of soil moisture. The best results were obtained when the soil samples used for calibration were linearly weighted as a function of depth in the soil profile and nonlinearly weighted as a function of distance from the CRS, and when the depth-specific amount of soil organic matter and lattice water content was explicitly considered. The annual cycle of tree foliation was found to be a negligible factor for calibration because the variable hydrogen mass in the leaves was small compared to the hydrogen mass changes by soil moisture variations. As a final point, we provide a calibration guide for a CRS in forested environments.


2016 ◽  
Vol 543 ◽  
pp. 510-522 ◽  
Author(s):  
Mark J.P. Sigouin ◽  
Miles Dyck ◽  
Bing Cheng Si ◽  
Wei Hu

2020 ◽  
Author(s):  
Matteo Bauckholt ◽  
Marco Pohle ◽  
Martin Schrön ◽  
Steffen Zacharias ◽  
Solveig Landmark ◽  
...  

<p>Soil water content in the unsaturated zone is a key parameter of the environmental system. The understanding of soil moisture plays a major role with regard to questions of water and nutrient supply to plants, groundwater recharge, soil genesis and climatic interactions.</p><p>In our study we aim to test a new technology for the non-invasive measurement of soil moisture profiles, the so-called Surface-NMR (Nuclear Magnetic Resonance). The instrument applies magnetic fields to the ground and detects its changes caused by mobile and immobile hydrogen atoms in the soil column. Using four different frequencies, the data may provide insights into the water content of four distinct soil layers between the surface and 20 cm depth.</p><p>We carried out multiple NMR measurements at four different field sites in Germany and compared the data with conventional methods, such as gravimetric soil samples, Time Domain Reflectometry (TDR), and Cosmic-Ray Neutron Sensing (CRNS).</p><p>The dataset will be used to investigate the following research questions:</p><ol><li>Is the Surface-NMR method suitable to provide depth-resolved information of soil moisture under field conditions?</li> <li>Does Surface-NMR have the potential to replace or complement conventional methods of soil moisture measurement in the field?</li> <li>What can we learn about the spatial variability and scale dependency of soil moisture by combining three measurement methods of different scale (TDR, NMR, CRNS)?</li> </ol>


2021 ◽  
Vol 25 (9) ◽  
pp. 4807-4824
Author(s):  
Maik Heistermann ◽  
Till Francke ◽  
Martin Schrön ◽  
Sascha E. Oswald

Abstract. Cosmic-ray neutron sensing (CRNS) is a powerful technique for retrieving representative estimates of soil water content at a horizontal scale of hectometres (the “field scale”) and depths of tens of centimetres (“the root zone”). This study demonstrates the potential of the CRNS technique to obtain spatio-temporal patterns of soil moisture beyond the integrated volume from isolated CRNS footprints. We use data from an observational campaign carried out between May and July 2019 that featured a dense network of more than 20 neutron detectors with partly overlapping footprints in an area that exhibits pronounced soil moisture gradients within one square kilometre. The present study is the first to combine these observations in order to represent the heterogeneity of soil water content at the sub-footprint scale as well as between the CRNS stations. First, we apply a state-of-the-art procedure to correct the observed neutron count rates for static effects (heterogeneity in space, e.g. soil organic matter) and dynamic effects (heterogeneity in time, e.g. barometric pressure). Based on the homogenized neutron data, we investigate the robustness of a calibration approach that uses a single calibration parameter across all CRNS stations. Finally, we benchmark two different interpolation techniques for obtaining spatio-temporal representations of soil moisture: first, ordinary Kriging with a fixed range; second, spatial interpolation complemented by geophysical inversion (“constrained interpolation”). To that end, we optimize the parameters of a geostatistical interpolation model so that the error in the forward-simulated neutron count rates is minimized, and suggest a heuristic forward operator to make the optimization problem computationally feasible. Comparison with independent measurements from a cluster of soil moisture sensors (SoilNet) shows that the constrained interpolation approach is superior for representing horizontal soil moisture gradients at the hectometre scale. The study demonstrates how a CRNS network can be used to generate coherent, consistent, and continuous soil moisture patterns that could be used to validate hydrological models or remote sensing products.


2021 ◽  
Author(s):  
Maik Heistermann ◽  
Till Francke ◽  
Martin Schrön ◽  
Sascha E. Oswald

Abstract. The method of Cosmic-Ray Neutron Sensing (CRNS) is a powerful technique to retrieve representative estimates of soil water content at a horizontal scale of hectometers (the field scale) and depths of tens of centimeters (the root zone). This study demonstrates the potential of the CRNS technique to obtain spatio-temporal patterns of soil moisture beyond the integrated volume from isolated CRNS footprints. We use data from an observational campaign between May and July 2019 which featured a network of more than 20 neutron detectors with partly overlapping footprints in an area that exhibits pronounced soil moisture gradients within 1 km2. The present study is the first to combine these observations in order to represent the heterogeneity of soil water content at the sub-footprint scale as well as between the CRNS stations. First, we apply a state-of-the-art procedure to correct the observed neutron count rates for static effects such as sensor sensitivity, vegetation biomass, soil organic carbon and lattice water, as well as for the influence of the temporally dynamic factors barometric pressure, air humidity, and incoming flux of neutrons. Based on the homogenised neutron data, we investigate the robustness of a uniform calibration approach using one calibration parameter value across all CRNS stations. Finally, we benchmark two different interpolation techniques in order to obtain space-time representations of soil moisture: first, Ordinary Kriging with a fixed range; second, a heuristic approach that complements the concept of spatial interpolation by the idea of a geophysical inversion (constrained interpolation). For the latter, we define a geostatistical model of the spatial soil moisture variation in the study area, and then optimize the parameters of that model so that the error of the forward-simulated neutron count rates is minimized. In order to make the optimization problem computationally feasible, we use a heuristic forward operator that is based on the physics of horizontal sensitivity of the neutron detector. The comparison with independent measurements from a cluster of soil moisture sensors (SoilNet) shows that the constrained interpolation approach outperforms Ordinary Kriging by putting a stronger emphasis on horizontal soil moisture gradients at the hectometer scale. The study demonstrates how a CRNS network can be used to generate consistent interpolated soil moisture patterns that could be used to validate hydrological models or remote sensing products.


2009 ◽  
Vol 6 (5) ◽  
pp. 6425-6454
Author(s):  
H. Stephen ◽  
S. Ahmad ◽  
T. C. Piechota ◽  
C. Tang

Abstract. The Tropical Rainfall Measuring Mission (TRMM) carries aboard the Precipitation Radar (TRMMPR) that measures the backscatter (σ°) of the surface. σ° is sensitive to surface soil moisture and vegetation conditions. Due to sparse vegetation in arid and semi-arid regions, TRMMPR σ° primarily depends on the soil water content. In this study we relate TRMMPR σ° measurements to soil water content (ms) in Lower Colorado River Basin (LCRB). σ° dependence on ms is studied for different vegetation greenness values determined through Normalized Difference Vegetation Index (NDVI). A new model of σ° that couples incidence angle, ms, and NDVI is used to derive parameters and retrieve soil water content. The calibration and validation of this model are performed using simulated and measured ms data. Simulated ms is estimated using Variable Infiltration Capacity (VIC) model whereas measured ms is acquired from ground measuring stations in Walnut Gulch Experimental Watershed (WGEW). σ° model is calibrated using VIC and WGEW ms data during 1998 and the calibrated model is used to derive ms during later years. The temporal trends of derived ms are consistent with VIC and WGEW ms data with correlation coefficient (R) of 0.89 and 0.74, respectively. Derived ms is also consistent with the measured precipitation data with R=0.76. The gridded VIC data is used to calibrate the model at each grid point in LCRB and spatial maps of the model parameters are prepared. The model parameters are spatially coherent with the general regional topography in LCRB. TRMMPR σ° derived soil moisture maps during May (dry) and August (wet) 1999 are spatially similar to VIC estimates with correlation 0.67 and 0.76, respectively. This research provides new insights into Ku-band σ° dependence on soil water content in the arid regions.


Biologia ◽  
2007 ◽  
Vol 62 (5) ◽  
Author(s):  
Horst Gerke ◽  
Rolf Kuchenbuch

AbstractPlants can affect soil moisture and the soil hydraulic properties both directly by root water uptake and indirectly by modifying the soil structure. Furthermore, water in plant roots is mostly neglected when studying soil hydraulic properties. In this contribution, we analyze effects of the moisture content inside roots as compared to bulk soil moisture contents and speculate on implications of non-capillary-bound root water for determination of soil moisture and calibration of soil hydraulic properties.In a field crop of maize (Zea mays) of 75 cm row spacing, we sampled the total soil volumes of 0.7 m × 0.4 m and 0.3 m deep plots at the time of tasseling. For each of the 84 soil cubes of 10 cm edge length, root mass and length as well as moisture content and soil bulk density were determined. Roots were separated in 3 size classes for which a mean root porosity of 0.82 was obtained from the relation between root dry mass density and root bulk density using pycnometers. The spatially distributed fractions of root water contents were compared with those of the water in capillary pores of the soil matrix.Water inside roots was mostly below 2–5% of total soil water content; however, locally near the plant rows it was up to 20%. The results suggest that soil moisture in roots should be separately considered. Upon drying, the relation between the soil and root water may change towards water remaining in roots. Relations depend especially on soil water retention properties, growth stages, and root distributions. Gravimetric soil water content measurement could be misleading and TDR probes providing an integrated signal are difficult to interpret. Root effects should be more intensively studied for improved field soil water balance calculations.


2002 ◽  
Vol 82 (4) ◽  
pp. 855-859 ◽  
Author(s):  
M. L. Leblanc ◽  
D. C. Cloutier ◽  
C. Hamel

A 2-year field study was conducted in corn to determine the influence of rainfall, irrigation and soil water content on common lambsquarters and barnyardgrass emergence. Rainfall or irrigation had no influence on the final weed density and little on the pattern of weed emergence because the soil water content was at or greater than field capacity during the main weed emergence period. Irrigation may hasten the first weed emergence by warming the soil when temperature is limiting for germination. In southwestern Quebec, temperature appears to be the most important factor regulating germination in the spring since soil moisture is normally at field capacity for a long period, in part because of the melting of snow. Key words: Irrigation, weed emergence, soil moisture


Sign in / Sign up

Export Citation Format

Share Document