scholarly journals Spatio-temporal soil moisture retrieval at the catchment scale using a dense network of cosmic-ray neutron sensors

2021 ◽  
Vol 25 (9) ◽  
pp. 4807-4824
Author(s):  
Maik Heistermann ◽  
Till Francke ◽  
Martin Schrön ◽  
Sascha E. Oswald

Abstract. Cosmic-ray neutron sensing (CRNS) is a powerful technique for retrieving representative estimates of soil water content at a horizontal scale of hectometres (the “field scale”) and depths of tens of centimetres (“the root zone”). This study demonstrates the potential of the CRNS technique to obtain spatio-temporal patterns of soil moisture beyond the integrated volume from isolated CRNS footprints. We use data from an observational campaign carried out between May and July 2019 that featured a dense network of more than 20 neutron detectors with partly overlapping footprints in an area that exhibits pronounced soil moisture gradients within one square kilometre. The present study is the first to combine these observations in order to represent the heterogeneity of soil water content at the sub-footprint scale as well as between the CRNS stations. First, we apply a state-of-the-art procedure to correct the observed neutron count rates for static effects (heterogeneity in space, e.g. soil organic matter) and dynamic effects (heterogeneity in time, e.g. barometric pressure). Based on the homogenized neutron data, we investigate the robustness of a calibration approach that uses a single calibration parameter across all CRNS stations. Finally, we benchmark two different interpolation techniques for obtaining spatio-temporal representations of soil moisture: first, ordinary Kriging with a fixed range; second, spatial interpolation complemented by geophysical inversion (“constrained interpolation”). To that end, we optimize the parameters of a geostatistical interpolation model so that the error in the forward-simulated neutron count rates is minimized, and suggest a heuristic forward operator to make the optimization problem computationally feasible. Comparison with independent measurements from a cluster of soil moisture sensors (SoilNet) shows that the constrained interpolation approach is superior for representing horizontal soil moisture gradients at the hectometre scale. The study demonstrates how a CRNS network can be used to generate coherent, consistent, and continuous soil moisture patterns that could be used to validate hydrological models or remote sensing products.

2021 ◽  
Author(s):  
Maik Heistermann ◽  
Till Francke ◽  
Martin Schrön ◽  
Sascha E. Oswald

Abstract. The method of Cosmic-Ray Neutron Sensing (CRNS) is a powerful technique to retrieve representative estimates of soil water content at a horizontal scale of hectometers (the field scale) and depths of tens of centimeters (the root zone). This study demonstrates the potential of the CRNS technique to obtain spatio-temporal patterns of soil moisture beyond the integrated volume from isolated CRNS footprints. We use data from an observational campaign between May and July 2019 which featured a network of more than 20 neutron detectors with partly overlapping footprints in an area that exhibits pronounced soil moisture gradients within 1 km2. The present study is the first to combine these observations in order to represent the heterogeneity of soil water content at the sub-footprint scale as well as between the CRNS stations. First, we apply a state-of-the-art procedure to correct the observed neutron count rates for static effects such as sensor sensitivity, vegetation biomass, soil organic carbon and lattice water, as well as for the influence of the temporally dynamic factors barometric pressure, air humidity, and incoming flux of neutrons. Based on the homogenised neutron data, we investigate the robustness of a uniform calibration approach using one calibration parameter value across all CRNS stations. Finally, we benchmark two different interpolation techniques in order to obtain space-time representations of soil moisture: first, Ordinary Kriging with a fixed range; second, a heuristic approach that complements the concept of spatial interpolation by the idea of a geophysical inversion (constrained interpolation). For the latter, we define a geostatistical model of the spatial soil moisture variation in the study area, and then optimize the parameters of that model so that the error of the forward-simulated neutron count rates is minimized. In order to make the optimization problem computationally feasible, we use a heuristic forward operator that is based on the physics of horizontal sensitivity of the neutron detector. The comparison with independent measurements from a cluster of soil moisture sensors (SoilNet) shows that the constrained interpolation approach outperforms Ordinary Kriging by putting a stronger emphasis on horizontal soil moisture gradients at the hectometer scale. The study demonstrates how a CRNS network can be used to generate consistent interpolated soil moisture patterns that could be used to validate hydrological models or remote sensing products.


2015 ◽  
Vol 12 (9) ◽  
pp. 9813-9864 ◽  
Author(s):  
I. Heidbüchel ◽  
A. Güntner ◽  
T. Blume

Abstract. Cosmic ray neutron sensors (CRS) are a promising technique to measure soil moisture at intermediate scales. To convert neutron counts to average volumetric soil water content a simple calibration function can be used (the N0-calibration of Desilets et al., 2010). This calibration function is based on soil water content derived directly from soil samples taken within the footprint of the sensor. We installed a CRS in a mixed forest in the lowlands of north-eastern Germany and calibrated it 10 times throughout one calendar year. Each calibration with the N0-calibration function resulted in a different CRS soil moisture time series, with deviations of up to 0.12 m3 m-3 for individual values of soil water content. Also, many of the calibration efforts resulted in time series that could not be matched with independent in situ measurements of soil water content. We therefore suggest a new calibration function with a different shape that can vary from one location to another. A two-point calibration proved to be adequate to correctly define the shape of the new calibration function if the calibration points were taken during both dry and wet conditions covering at least 50 % of the total range of soil moisture. The best results were obtained when the soil samples used for calibration were linearly weighted as a function of depth in the soil profile and non-linearly weighted as a function of distance from the CRS, and when the depth-specific amount of soil organic matter and lattice water content was explicitly considered. The annual cycle of tree foliation was found to be a negligible factor for calibration because the variable hydrogen mass in the leaves was small compared to the hydrogen mass changes by soil moisture variations. Finally, we provide a best practice calibration guide for CRS in forested environments.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 553f-554
Author(s):  
A.K. Alva ◽  
A. Fares

Supplemental irrigation is often necessary for high economic returns for most cropping conditions even in humid areas. As irrigation costs continue to increase more efforts should be exerted to minimize these costs. Real time estimation and/or measurement of available soil water content in the crop root zone is one of the several methods used to help growers in making the right decision regarding timing and quantity of irrigation. The gravimetric method of soil water content determination is laborious and doesn't suite for frequent sampling from the same location because it requires destructive soil sampling. Tensiometers, which measure soil water potential that can be converted into soil water content using soil moisture release curves, have been used for irrigation scheduling. However, in extreme sandy soils the working interval of tensiometer is reduced, hence it may be difficult to detect small changes in soil moisture content. Capacitance probes which operate on the principle of apparent dielectric constant of the soil-water-air mixture are extremely sensitive to small changes in the soil water content at short time intervals. These probes can be placed at various depths within and below the effective rooting depth for a real time monitoring of the water content. Based on this continuous monitoring of the soil water content, irrigation is scheduled to replenish the water deficit within the rooting depth while leaching below the root zone is minimized. These are important management practices aimed to increase irrigation efficiency, and nutrient uptake efficiency for optimal crop production, while minimizing the impact of agricultural non-point source pollutants on the groundwater quality.


2016 ◽  
Vol 20 (3) ◽  
pp. 1269-1288 ◽  
Author(s):  
Ingo Heidbüchel ◽  
Andreas Güntner ◽  
Theresa Blume

Abstract. Measuring soil moisture with cosmic-ray neutrons is a promising technique for intermediate spatial scales. To convert neutron counts to average volumetric soil water content a simple calibration function can be used (the N0-calibration of Desilets et al., 2010). The calibration is based on soil water content derived directly from soil samples taken within the footprint of the sensor. We installed a cosmic-ray neutron sensor (CRS) in a mixed forest in the lowlands of north-eastern Germany and calibrated it 10 times throughout one calendar year. Each calibration with the N0-calibration function resulted in a different CRS soil moisture time series, with deviations of up to 0.1 m3 m−3 (24 % of the total range) for individual values of soil water content. Also, many of the calibration efforts resulted in time series that could not be matched with independent in situ measurements of soil water content. We therefore suggest a modified calibration function with a different shape that can vary from one location to another. A two-point calibration was found to effectively define the shape of the modified calibration function if the calibration points were taken during both dry and wet conditions spanning at least half of the total range of soil moisture. The best results were obtained when the soil samples used for calibration were linearly weighted as a function of depth in the soil profile and nonlinearly weighted as a function of distance from the CRS, and when the depth-specific amount of soil organic matter and lattice water content was explicitly considered. The annual cycle of tree foliation was found to be a negligible factor for calibration because the variable hydrogen mass in the leaves was small compared to the hydrogen mass changes by soil moisture variations. As a final point, we provide a calibration guide for a CRS in forested environments.


2016 ◽  
Vol 30 (26) ◽  
pp. 4987-4999 ◽  
Author(s):  
J. G. Evans ◽  
H. C. Ward ◽  
J. R. Blake ◽  
E. J. Hewitt ◽  
R. Morrison ◽  
...  

2016 ◽  
Vol 543 ◽  
pp. 510-522 ◽  
Author(s):  
Mark J.P. Sigouin ◽  
Miles Dyck ◽  
Bing Cheng Si ◽  
Wei Hu

2017 ◽  
Vol 10 (1) ◽  
pp. 1 ◽  
Author(s):  
Ruixiu Sui

Irrigation is required to ensure crop production. Practical methods of use sensors to determine soil water status are needed in irrigation scheduling. Soil moisture sensors were evaluated and used for irrigation scheduling in humid region of the Mid-South US. Soil moisture sensors were installed in soil at depths of 15 cm, 30 cm, and 61 cm belowground. Soil volumetric water content was automatically measured by the sensors in a time interval of an hour during the crop growing season. Soil moisture data were wirelessly transferred onto internet through a wireless sensor network (WSN) so that the data could be remotely accessed online. Soil water content measured at the three depths were interpreted using a weighted average method to reflect the status of soil water in plant root zone. A threshold to trigger an irrigation event was determined with sensor-measured soil water content. An antenna mounting device was developed for operation of the WSN. Using the antenna mounting device, the soil moisture measurement was not be interrupted by crop field management practices.


2020 ◽  
Author(s):  
Matteo Bauckholt ◽  
Marco Pohle ◽  
Martin Schrön ◽  
Steffen Zacharias ◽  
Solveig Landmark ◽  
...  

<p>Soil water content in the unsaturated zone is a key parameter of the environmental system. The understanding of soil moisture plays a major role with regard to questions of water and nutrient supply to plants, groundwater recharge, soil genesis and climatic interactions.</p><p>In our study we aim to test a new technology for the non-invasive measurement of soil moisture profiles, the so-called Surface-NMR (Nuclear Magnetic Resonance). The instrument applies magnetic fields to the ground and detects its changes caused by mobile and immobile hydrogen atoms in the soil column. Using four different frequencies, the data may provide insights into the water content of four distinct soil layers between the surface and 20 cm depth.</p><p>We carried out multiple NMR measurements at four different field sites in Germany and compared the data with conventional methods, such as gravimetric soil samples, Time Domain Reflectometry (TDR), and Cosmic-Ray Neutron Sensing (CRNS).</p><p>The dataset will be used to investigate the following research questions:</p><ol><li>Is the Surface-NMR method suitable to provide depth-resolved information of soil moisture under field conditions?</li> <li>Does Surface-NMR have the potential to replace or complement conventional methods of soil moisture measurement in the field?</li> <li>What can we learn about the spatial variability and scale dependency of soil moisture by combining three measurement methods of different scale (TDR, NMR, CRNS)?</li> </ol>


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2449
Author(s):  
Hui Wu ◽  
Shaozhong Kang ◽  
Xiaojuan Li ◽  
Ping Guo ◽  
Shunjun Hu

Threshold levels of soil moisture and salinity in the plant root zone can guide crop planting and farming practices by providing a baseline for adjusting irrigation and modifying soil salinity. This study describes a method of soil water and salinity control based on an optimized model for growing cotton in an arid area. Experiments were conducted in Akesu Irrigation District, southern Xinjiang, northwest China, to provide data for cotton yield and soil water content and salinity in the root zone at different growth stages. The sensitivity of cotton to soil water content and salinity was predicted for different growth periods using a modified Jensen model. An optimization model with 480 boundary conditions was created, with the objective of maximizing yield, to obtain the dynamically varying water and salt threshold levels in the root zone for scenarios that included three initial soil moisture content values (W0), eight irrigation quantities (M), five initial soil salt content values (S0), and four irrigation water salinity levels (K). Results showed that the flowering–boll stage is the crucial period for cotton yield, and the threshold levels of soil water content and salinity in the cotton root zone varied with the boundary conditions. The scenario chosen for the research area in this study was W0 = 0.85θfc (θfc is field capacity), S0 = 4 g kg−1, M = 400 mm, K = 0 g L−1. The predicted threshold levels of soil water for different growth stages (seedling, bud, flowering–boll, and boll-opening) were respectively 0.75–0.85θfc, 0.65–0.75θfc, 0.56–0.65θfc, and 0.45–0.56θfc. Corresponding threshold levels of salt were 4–4.16, 4.16–4.39, 4.39–4.64, and 4.64–4.97 g kg−1 when no action was taken to remove salt from the root zone. This study provides an innovation method for the determination of dynamically varying soil water content and salt thresholds.


Sign in / Sign up

Export Citation Format

Share Document