neutron count
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 6)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Vol 25 (9) ◽  
pp. 4807-4824
Author(s):  
Maik Heistermann ◽  
Till Francke ◽  
Martin Schrön ◽  
Sascha E. Oswald

Abstract. Cosmic-ray neutron sensing (CRNS) is a powerful technique for retrieving representative estimates of soil water content at a horizontal scale of hectometres (the “field scale”) and depths of tens of centimetres (“the root zone”). This study demonstrates the potential of the CRNS technique to obtain spatio-temporal patterns of soil moisture beyond the integrated volume from isolated CRNS footprints. We use data from an observational campaign carried out between May and July 2019 that featured a dense network of more than 20 neutron detectors with partly overlapping footprints in an area that exhibits pronounced soil moisture gradients within one square kilometre. The present study is the first to combine these observations in order to represent the heterogeneity of soil water content at the sub-footprint scale as well as between the CRNS stations. First, we apply a state-of-the-art procedure to correct the observed neutron count rates for static effects (heterogeneity in space, e.g. soil organic matter) and dynamic effects (heterogeneity in time, e.g. barometric pressure). Based on the homogenized neutron data, we investigate the robustness of a calibration approach that uses a single calibration parameter across all CRNS stations. Finally, we benchmark two different interpolation techniques for obtaining spatio-temporal representations of soil moisture: first, ordinary Kriging with a fixed range; second, spatial interpolation complemented by geophysical inversion (“constrained interpolation”). To that end, we optimize the parameters of a geostatistical interpolation model so that the error in the forward-simulated neutron count rates is minimized, and suggest a heuristic forward operator to make the optimization problem computationally feasible. Comparison with independent measurements from a cluster of soil moisture sensors (SoilNet) shows that the constrained interpolation approach is superior for representing horizontal soil moisture gradients at the hectometre scale. The study demonstrates how a CRNS network can be used to generate coherent, consistent, and continuous soil moisture patterns that could be used to validate hydrological models or remote sensing products.



2021 ◽  
Author(s):  
Feng Zhang ◽  
◽  
Fei Qiu ◽  
Qunwei Fang ◽  
Xiaoyang Zhang ◽  
...  

Unconventional reservoirs have low porosity and complex mineral composition containing quartz, feldspar, calcite, dolomite, pyrite and kerogen, which may seriously reduce the accuracy of the porosity measurement. The multi-detector pulsed neutron logging technique was already used for determining porosity through the combination of inelastic and capture gamma ray information in different spacing. In this paper, the new parameter, which is characterized by thermal neutron count ratio and lithology factor based on element content, is proposed to determine porosity from the three-detector pulsed neutron element logging in unconventional reservoir. To evaluate mineral composition, lithology, and gas/oil/water saturation in unconventional reservoir, a new multi-detector pulsed neutron logging tool was put out. The instrument consists of two He-3 thermal neutron detectors and a LaBr3 gamma detector. Therefore, the combination of thermal neutron count ratio between near detector and long detector with lithology factor of element content can measure neutron porosity and eliminate the influence of complex lithology. Based on some calibration pit data measured in laboratory, as well as the numerical simulation method, the influences of different lithological characters and mineral types on the neutron count ratio were studied. Meanwhile, large numbers of stratigraphic models with different lithological characters and different mineral compositions were established using Monte Carlo simulation method, and the content of silicon, calcium, hydrogen, oxygen, magnesium, aluminum and iron under different stratigraphic conditions was determined by the spectral element solution. A regression analysis was conducted to establish the relationship between the content of elements and the lithologic factor. The count ratio difference stemming from different lithological and mineral compositions was eliminated through a combination of lithological correction factor and thermal neutron count ratio. Different mineral compositions of stratigraphic simulation models were set up for verification. The absolute error of porosity measurement was less than 1.0p.u. in the formations with porosity less than 15p.u., which verified the accuracy of this method for neutron porosity evaluation in complex lithological characters formations. Two field examples were processed by this new parameter which in combination of thermal neutron count ratio and formation elements content information from the three-detector pulsed neutron instrument, which indicated a good accuracy for unconventional oil and gas reservoir evaluation.



2021 ◽  
Author(s):  
Markus Köhli ◽  
Jannis Weimar ◽  
Benjamin Fersch ◽  
Roland Baatz ◽  
Martin Schrön ◽  
...  

<p>The novel method of Cosmic-ray neutron sensing (CRNS) allows non-invasive soil moisture measurements at a hectometer scaled footprint. Up to now, the conversion of soil moisture to a detectable neutron count rate relies mainly on the equation presented by Desilets et al. (2010). While in general a hyperbolic expression can be derived from theoretical considerations, their empiric parameterisation needs to be revised for two reasons. Firstly, a rigorous mathematical treatment reveals that the values of the four parameters are ambiguous because their values are not independent. We find a 3-parameter equation with unambiguous values of the parameters which is equivalent in any other respect to the 4-parameter equation. Secondly, high-resolution Monte-Carlo simulations revealed a systematic deviation of the count rate to soil moisture relation especially for extremely dry conditions as well as very humid conditions. That is a hint, that a smaller contribution to the intensity was forgotten or not adequately treated by the conventional approach. Investigating the above-ground neutron flux by a broadly based Monte-Carlo simulation campaign revealed a more detailed understanding of different contributions to this signal, especially targeting air humidity corrections. The packages MCNP and URANOS were used to derive a function able to describe the respective dependencies including the effect of different hydrogen pools and the detector-specific response function. The new relationship has been tested at three exemplary measurement sites and its remarkable performance allows for a promising prospect of more comprehensive data quality in the future.</p>



2021 ◽  
Author(s):  
Maik Heistermann ◽  
Till Francke ◽  
Martin Schrön ◽  
Sascha E. Oswald

Abstract. The method of Cosmic-Ray Neutron Sensing (CRNS) is a powerful technique to retrieve representative estimates of soil water content at a horizontal scale of hectometers (the field scale) and depths of tens of centimeters (the root zone). This study demonstrates the potential of the CRNS technique to obtain spatio-temporal patterns of soil moisture beyond the integrated volume from isolated CRNS footprints. We use data from an observational campaign between May and July 2019 which featured a network of more than 20 neutron detectors with partly overlapping footprints in an area that exhibits pronounced soil moisture gradients within 1 km2. The present study is the first to combine these observations in order to represent the heterogeneity of soil water content at the sub-footprint scale as well as between the CRNS stations. First, we apply a state-of-the-art procedure to correct the observed neutron count rates for static effects such as sensor sensitivity, vegetation biomass, soil organic carbon and lattice water, as well as for the influence of the temporally dynamic factors barometric pressure, air humidity, and incoming flux of neutrons. Based on the homogenised neutron data, we investigate the robustness of a uniform calibration approach using one calibration parameter value across all CRNS stations. Finally, we benchmark two different interpolation techniques in order to obtain space-time representations of soil moisture: first, Ordinary Kriging with a fixed range; second, a heuristic approach that complements the concept of spatial interpolation by the idea of a geophysical inversion (constrained interpolation). For the latter, we define a geostatistical model of the spatial soil moisture variation in the study area, and then optimize the parameters of that model so that the error of the forward-simulated neutron count rates is minimized. In order to make the optimization problem computationally feasible, we use a heuristic forward operator that is based on the physics of horizontal sensitivity of the neutron detector. The comparison with independent measurements from a cluster of soil moisture sensors (SoilNet) shows that the constrained interpolation approach outperforms Ordinary Kriging by putting a stronger emphasis on horizontal soil moisture gradients at the hectometer scale. The study demonstrates how a CRNS network can be used to generate consistent interpolated soil moisture patterns that could be used to validate hydrological models or remote sensing products.



Author(s):  
Kengo Hashimoto

AbstractFor a subcritical reactor system driven by a periodically pulsed spallation neutron source in KUCA, the Feynman-α and the Rossi-α neutron correlation analyses are conducted to determine the prompt neutron decay constant and quantitatively to confirm a non-Poisson character of the neutron source. The decay constant determined from the present Feynman-α analysis well agrees with that from a previous analysis for the same subcritical system driven by an inherent source. Considering the effect of a higher mode excited, the disagreement can be successfully resolved. The power spectral analysis on frequency domain is also carried out. Not only the cross-power but also the auto-power spectral density have a considerable correlated component even at a deeply subcritical state, where no correlated component could be previously observed under a 14 MeV neutron source. The indicator of the non-Poisson character of the present spallation source can be obtained from the spectral analysis and is consistent with that from the Rossi-α analysis. An experimental technique based on an accelerator-beam trip or restart operation is proposed to determine the subcritical reactivity of ADS. Applying the least-squares inverse kinetics method to the data analysis, the subcriticality can be inferred from time-sequence neutron count data after these operations.



2021 ◽  
Vol 253 ◽  
pp. 07013
Author(s):  
Branislav Vrban ◽  
Štefan Čerba ◽  
Filip Osuský ◽  
Jakub Lüley ◽  
Vladimír Nečas ◽  
...  

The Mini Labyrinth experiment is a simple neutron and gamma shielding experiment developed at STU, inspired by the ALARM-CF-AIR-LAB-001 ICSBEP benchmark experiment. The STU Mini Labyrinth is approximately ten times smaller and consists of NEUTRONSTOP shielding blocks. This paper describes the second version of the Mini Labyrinth experiment and presents the results of the neutron and gamma fields simulation and measurement. The PuBe neutron source with the emission rate of 1.0E7 n.s-1 was utilized in the experiment. The measurement of gamma ambient dose equivalent H*(10) and neutron count rates is performed by the Thermo Scientific RadEye portable survey meter. The simulation part was carried out using the state-of-the-art MCNP6 and SCALE6 MONACO stochastic calculation tools taking into account the detailed geometry of the labyrinth and a combined neutron and gamma source of particles. The comparisons were performed between codes and an experiment, based on the dose rate in the unique detection positions and using a 2D map of neutron and photon fluxes. The propagation of cross-section uncertainties was investigated through the shielding analysis. Partial agreement between codes and measurement was achieved, however serious discrepancies near the PuBe source were identified.



2020 ◽  
Vol 2 ◽  
Author(s):  
Jannis Jakobi ◽  
Johan A. Huisman ◽  
Martin Schrön ◽  
Justus Fiedler ◽  
Cosimo Brogi ◽  
...  

Cosmic ray neutron (CRN) sensing allows for non-invasive soil moisture measurements at the field scale and relies on the inverse correlation between aboveground measured epithermal neutron intensity (1 eV−100 keV) and environmental water content. The measurement uncertainty follows Poisson statistics and thus increases with decreasing neutron intensity, which corresponds to increasing soil moisture. In order to reduce measurement uncertainty, the neutron count rate is usually aggregated over 12 or 24 h time windows for stationary CRN probes. To obtain accurate soil moisture estimates with mobile CRN rover applications, the aggregation of neutron measurements is also necessary and should consider soil wetness and driving speed. To date, the optimization of spatial aggregation of mobile CRN observations in order to balance measurement accuracy and spatial resolution of soil moisture patterns has not been investigated in detail. In this work, we present and apply an easy-to-use method based on Gaussian error propagation theory for uncertainty quantification of soil moisture measurements obtained with CRN sensing. We used a 3rd order Taylor expansion for estimating the soil moisture uncertainty from uncertainty in neutron counts and compared the results to a Monte Carlo approach with excellent agreement. Furthermore, we applied our method with selected aggregation times to investigate how CRN rover survey design affects soil moisture estimation uncertainty. We anticipate that the new approach can be used to improve the strategic planning and evaluation of CRN rover surveys based on uncertainty requirements.



2020 ◽  
Author(s):  
Jannis Weimar ◽  
Markus Köhli ◽  
Martin Schrön ◽  
Ulrich Schmidt

<p>The novel method of Cosmic-ray neutron sensing (CRNS) allows non-invasive soil moisture measurements at a hectometer scaled footprint. Using this technique one can relate the flux density of albedo neutrons, generated in cosmic-ray induced air showers, to the amount of water within a radius of several hundred meters. In the recent years the understanding of neutron transport by Monte Carlo simulations led to major advancements in precision, which have successfully targeted a manifold of use cases. For example the improvements in the signal interpretation have meanwhile also been applied to the determination of snow water in Alpine regions. Up to now, the conversion of soil moisture to a detectable neutron count rate relies mainly on the equation presented by Desilets and Zreda. While in general a hyperbolic expression can be derived from theoretical considerations, their empiric parameterisation needs to be revised as many groups have found site-specific calibrations, which are simply based on different empirical data sets.</p><p>Investigating the above-ground neutron intensity by a broadly based Monte Carlo simulation campaign revealed a more detailed understanding of different contributions to this signal, especially targeting air humidity corrections. The packages MCNP and URANOS were used to derive a function able to describe the respective dependencies including the effect of different hydrogen pools and the sensor response function. The resulting formula significantly improves the soil-moisture-to-intensity conversion and allows for a more comprehensive instrument data quality, which especially closes the gap between observations of very dry and wet conditions.</p>



2019 ◽  
Vol 219 ◽  
pp. 03001
Author(s):  
Alexey Fomin ◽  
Anatolii Serebrov

A Monte Carlo model was developed for our current neutron lifetime experiment using storage of ultracold neutrons (UCN) in a big gravitational trap. The model allows us to calculate neutron trajectories in the given geometry, taking into account gravity, and has been used in simulations that reproduce all stages of the experiment. The simulation was proven able to reproduce the time-dependence of the detected neutron count rates. For investigation of systematic effects, the value of the neutron lifetime resulting from the simulation of the experimental procedure was compared to the value entered as an input parameter. In particular, the systematic uncertainty associated with the method of calculating the effective UCN collision frequency in the trap was found not to exceed 0.1 s. In addition, calculations showed that up to 1% uncoated area of the copper trap has a negligible influence on the neutron lifetime result.



Sign in / Sign up

Export Citation Format

Share Document